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ABSTRACT

Title of Thesis: Bayesian Sequential Hypothesis Testing
David C. Mac Enany, Master of Science, 1986

Thesis Directed by : Dr. John S. Baras
Professor and Head of the Systems Research Center
Electrical Engineering Department

In this thesis, optimality results are presented for Bayesian problems of sequential hypothesis
testing. Conditions are given which are sufficient to demonstrate the existence and optimality
of threshold policies and others are given which help characterize these policies. The general
results are applied to solve foﬁr specific problems where the observations respectively arise from
a time-homogeneous diffusion, a progressive semimartingale observed through a diffusion, a time-
homogeneous Poisson process, and a prgdictable semimartingale observed through a point process.
It is shown that threshold policies are optimal in all four cases. Exact formulas for the Bayesian’

costs in the point process cases will be presented for the first time.
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Introduction

This thesis addresses a class of problems in the theory of optimal stopping
rules, or sequential analysis, which are called Bayesian sequential hypothesis test-
ing problems. In the classical methods of mathematical statistics one supposes that
an observation of a stocha.stig process is available for analysis, but that the length
of the observation interval is fixed in advance. Thus in the classical binary hypoth-
esis testing problem, one fixes a time say T, and then observes some process say
{y: : 0 < t < T}, whose statistics under each hypothesis are known. A decision is
then made as to which hypothesis is the best to choose. In contrast to this approach
wherein the length of time that the process is observed is fixed in advance, the ap-
proach in sequential analysis is to terminate the observations at a random stopping
time which is chosen by the observer and based upon the information contained in
the data observed. In the Bayesian version of this problem, one assumés knowledge of
the prior statistics for each hyp(;thesis and chooses that hypothesis which best mini-
mizes a chosen cost criterion. The advantage of the sequential approach in Bayesian
problems is that one can prove that they yield a cost smaller than any other method
which uses a fixed observation time. This advantage notwithstanding, in some prob-
lems a fixed observation time is inappropriate due to the nature of the data. -For
instance, many situations demand that a cost be levied according to the amount of
time it takes to reach a decision. In particular, this is usually true whenever data

collection is expensive or in situations where it becomes increasingly risky to continue
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to observe the data. In these situations one is compelled to use a sequential method.

The principal goal of this thesis is to demonstrate the optimality of certain statis-
tical procedures, called threshold policies, as applied to problems of Bayesian sequen-
tial hypothesis testing. The importance of Bayesian sequential hypothesis testing is
due not only to its applicability to many practical signal detection problems, but also
because it provides a theoretical foundation with which to prove optimality results

for other sequential statistical procedures.

The mathematical theory available to formulate and obtain optimality results in
sequential analysis roughly divides into two main categories, the first of which can be
called the ‘dynamic programming’ approach, and the second which might be called the
‘excessive function’ approach. Naturally, both approaches share many similarities but
are sufficiently different to permit this broad classification. The methodology adopted
in this thesis is best described as falling into the second category, but represents
a significant modification to the usual development [DYNKIN], [SHIRYAYEV 77|,
[THOMPSON].

Loosely speaking, the excessive function theory approach extends well-known
results for sequences of independent and identically distributed random variables to
continuous-time (see also [KEL’BERT]). In this thesis, a more direct development is
taken, one which yields a rich interplay between analytical and probabilistic ideas.
While it is true that that the excessive function theory is more general and hence more
powerful, it is also true that the approach contained herein requires considerably less
sophisticated mathematical machinery. Thus one can argue that it renders important
optimality results more accessible to- a wider audience. Moreover, although it is less
generally applicable, it is nonetheless powerful enough that with it one can obtain the
solutions to four important applications, two of which, to this author’s knowledge,
have never before appeared.

The organization of the thesis by chapter is from the general to the specific, and

2



is given as follows.

In Chapter Lis given a general, detailed treatment of certain types of semimartin-
gales, special cases of which will be needed later in the applications chapter. Also
given, is a proof of the existence and uniqueness of the solution to a functional differ-
ential equation. It was a tough decision to include this theorem in the first chapter,
but it was felt that this type of differential equation is so intrinsic to the problems
involving Poisson-type processes, that relegating the result to an unread appendix
would be cheating the reader out of valuable insight into the nature of these types of
problems, and their associated difficulties. Indeed, so intrinsic and problematic are
these equations that they and their more complicated integro-differential brethren are
deemed by Davis to be the ‘bugbear of the subject’ [DAVIS]. An interesting histor-
ical note is that one of the earliest (post-Euler) references to equations of the type
considered herein is due to Poisson himself [POISSON].

In Chapter II, the general Bayesian sequential hypothesis testing problem is
discussed and formulated. A principal goal of the chapter is to show how one can
greatly reduce the complexity of the search for the optimal test. Also given are initial
characterizations of the optimal Bayesian cost function._

In Chapter III, the principal optimality result is given, the essence of which is con-
tained in Lemma 3.1.1. Also included are theorems whose importance is paramount

in the discovery of the unique test which is optimal in a particular application.

In Chapter IV, the results of the previous chapters are applied to solve four
Bayesian sequential detection problems, the first involving a fully-observed time-
homogeneous diffusion, and the second involving a partially-observed progressively
measurable semimartingale process. Partial optimality results for the latter have
been previously presented only for a special case [LaVIGNA]. In the third problem,
the Bayesian sequential hypothesis testing problem based on observations of a Poisson

process is solved. Explicit formulae for the risk and thresholds are presented. These
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results are then extended to solve the last sequential detection problem wherein the
observations arise from a point process whose underlying rate is one of two predictable
semimartingales.

After reading the thesis, one should be able to appreciate the difficulty in handling
non-diffusion type processes in sequential analysis, especially in view of the formulae
obtained in the point process cases. It seems safe to say that future work in sequential
analysis will deal with ever more exotic processes as demanded by applications, and
that therefore the research in this area will of necessity focus more on approximate
and asymptotic methods. It appears that a good starting point for such research is
with the relatively recent functional central limit theory [HELLAND)]. In this respect,
the explicit formulas obtained herein give one a numerical yardstick with which to

judge candidate approximation schemes.



Chapter 1
Prerequisite Considerations

1.0 Introduction

This chapter will establish some important results which will be used later on.
Each theorem will be presented with slightly more génerality than will be necessary

in the hope that the essence of each is more clearly understood.

Theorem 1.1.1 demonstrates that special types of semimartingales always escape
intervals in finite time. This result will be used to show that particular hypothesis
testing strategies—threshold policies based on these semimartingales—in effect bifur-
cate the sample space {1, in the sense that they terminate in finite time almost surely

under either hypothesis.

Theorem 1.1.2 establishes a weak form of the differential rule for functions of
locally finite variation semimartingales with piecewise ;nonotone sample paths. The
usual generalized It differential rule is stated for twice continuously differentiable
functions of general semimartingales. This is sometimes specialized to semimartin-
gales driven by discontinuous martingale processes where the smoothness requirement
is weakened to ‘once continuously differentiable’. It will become necessary in later
cha.pters'to consider stochastic differentials of functions even less smooth, specifically

functions which are piecewise right continuous and have piecewise right continuous

derivatives. In fact, functions of this type are intrinsic to the theory of discontinuous
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Chapter I : Prerequisite Considerations 6

semimartingales. The reason is that the formal application of the usual differen-
tial rule to discontinuous semimartingales very often leads to functional differential
equations [e.g. HIBEY, SEGALL] of a type whose solutions are generically not con-
tinuously differentiable, and which do not, therefore, satisfy the assumptions which
led to them.

Theorem 1.2.1 establishes the existence and uniqueness of the solution to a cer-
tain functional advance differential equation. Its solution yields an impoftant quan-
tity arising in the sequential Bayesian hypothesis testing problem involving point

processes.
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1.1 Semimartingale Prerequisites

Consider a probability triple (2, 7, P) equipped with a right-continuous filtra-

tion #,t > 0. In this thesis, the following, definition of semimartingale will be used.

Definition 1.1.1 A (P, #;)-semimartingale is a random process X which has the
decomposition,

Xt = Xo + Mt + At t Z 0 P-a.s. (11.1)

where X is a (P, #;)-r.v., | Xo| < oo P-a.s., M is a corlol (P, #;)-local martingale,
with My = 0, and A is a right-continuous, 7;-adapted process, initially zero and
of locally integrable variation [ELLIOTT]..The value set for X will be denoted
as F CR.

Without loss of generality (wlog) then, take the predictable version of A and
note that the random variable Ao, exists [ELLIOTT]. In most of this thesis, the full
generality of the definition willl not be needed. However, as.sta.ted previously, the
results given in this chapter are somewhat more general than will be necessary in
later chapters but that this is done for clarity and because the general results were
no harder to obtain. | |

Since a principal theme of the thesis is to consider threshold policies and hence
first exit times of processes from intervals, one is naturally interested in the properties
that should be satisfied by a process upon which one intends to base a threshold
policy. One obvious requirement is that such a process should eventually exit the
threshold interval. The next theorem gives three conditions which are sufficient to
guarantee such behavior for a semimartingale. It is an adaptation and generalization

of Lemma 17.7 in [LIPTSER & SHIRYAYEV 78|.

Theorem 1.1.1 Let X be a real (P, ;)-semimartingale as in definition 1.1.1, and

suppose P{|Ac| = o0} = 1, while P{|A:| = o0} = 0, VO < t < oo. Furthermore,
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suppose | E[Az]| = E[|A#]|] for any 7; -stopping time 7. Then, X will escape any
open interval containing Xy in finite time, P-a.s.
Proof:

Choose Xy = 0 P-a.s. wlog and choose a,b to satisfy —o0 < a < 0 < b < o0,
a,b otherwise arbitrary. Define r = inf{t > 0 : X; & (a,b)} and o, = inf{t > 0 :
f; |dAs| > n},n > 0. Note that 7 and o, are both F;-stopping times and thus so is
T A opn. Moreover, since A is of locally integrable variation, ¢, < 00 P-a.s. Vn >0,
and o, < 0n+1‘ T oo P-as.

Next, assume that for all n > 0 it is true that,
@< X,ng, < b (1.1.2)

Otherwise, there exists an n > 0 satisfying 1 Ao, = 7 < 0, < 0o P-a.s., and such
that X, a0, = X, & (a,b), from which the theorem follows. So assuming 1.1.2 holds
for all n > 0, the remainder of the proof will proceed by reductio ad absurdum. From

1.1.2 then, using the fact that M is a (P, %)-local martingale one obtains,
a—b<a< E[Ars,]<b<b—a, - (L13)
since clearly a — b < a, a.nd b < b — a. Rewriting 1.1.3 yields,
| E[Arpo,]| <b—a < oo, (1.1.4)

and since 0, T oo P-a.s., then A,r,, — A, P-a.s, and invoking the bounded conver-
gence theorem yields [F[A,]| < b — a. From this it follows that E[|A,|] < b — a by
hypothesis, and hence,

E[|A;]] < oo. (1.1.5)

But then,
00 > E[|Ar|] = E[1{r=c0}|Ar|] + E[L{r<oo}|Arl]
(1.1.6)
2 E[1{1'=oo}|A1'” = E[1{1=oo}|A00”’
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and since |A,| = oo P-a.s., it must be true that 7 < co P-a.s. That is to say, X will
exit (a,b) almost surely in finite time. Since a and b were arbitrary modulo Xj, the

result is shown. , [ |

Note that the result can be extended to a process whose compensator almost
surely takes on one of two not necessarily infinite values at infinity, as long as one
can exhibit a suitably regular, bijective function which maps those values into plus
and minus infinity. The theorem then holds for the semimartingale resulting from the
function acting on the original process, and hence for the original process by inversion.

Perhaps it should also be stressed that the theorem states only a sufficiency
result. For instance, it is clear that no martingale can satisfy its hypotheses, because
martingales lack (nontrivial) compensators. On the other hand, using the same notion
as in the preceding paragraph, a bijective function of a martingale mighi; yield a
process with a nontrivial compensator which indeed satisfies the theorem. In fact,
in Chapter IV there will be a need to guarantee that the exit times of a certain
martingale (an a posteriori probability) are almost surely finite. The approach taken

to accomplish this has just been outlined and utilizes Theorem 1.1.1.

When a semimartingale as in definition 1.1.1 escapes an open interval, questions
naturally arise as to its whereabouts at the time of escape. The next definition

provides a handle with which to phrase such questions.

“

Definition 1.1.2 Let X be a real (P, #;)-semimartingale, taking values in E C IR,
and let Xy € Iy, P-a.s., where Ig C F, is some nonempty open interval. Define the

sets,
1 ={we: Xo(w) € Io},

oo ={w e N : Xolw) € Do},

and suppose T is given as,

r=inf{t >0 : X; & Io}.
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Then the X-boundary of Iy is defined and denoted as,
Io={z€E : z=X,q)(w) for some w € Qg \ Do}
In addition, the X-closure of I is defined and denoted as,
[Io)z = Io U 33 10.

It will also be convenient to define the upper and lower X-boundary of Iy as 8} Iy
and 87 Iy, respectively, i.e., 8;Io = 8;Io U 8} Iy, and z' € 8} Iy implies z' > = for
all z € 97 I, and vice versa. .

Note that 8, I is P-a.s. nonempty if X satisfies the hypotheses of Theorem 1.1.1,
and often 81y C 8.l for any such X, where 31 is the usual boundary of Iy consisting
of its endpoints. In fact, if X is a continuous semimartingale satisfying Theorem 1.1.1,
then 8Iy = 8, Iy P-a.s. Also note that neither 8,1 nor [Io). a.re.necessarily closed sets.
For instance, if X is a real right continuous semimartingale driven by a discontinuous
martingale whose. jumps are positive, then 8} Iy is generically a semi-open interval,
closed on the left and open on the right.

As it was just indicated, the notion of the boundary of an interval with respect
to a jump-type process is not trivial as it is for continuous processes. The simplest
case is where the jumps of the process are always positive (negative) while the sample
paths are strictly nonincreasing (nondecreasing) in between the jumps. Fortunately,
this is the situation in the binary hypothesis testing of countingAprocesses. It is also
fortunate because a weaker form of the generalized It6 rule can be given for a process
which has such sample paths, and because one soon discovers that the differential
rule, as it is usually stated, is inadequate to handle the types of functions which
arise in the hypothesis testing of such processes. Specifically, the It6 rule for jump
processes is usuaily given for functions which are once continuously differentiable,
where;a.s functions which are less smooth need to be considered. The next definition

gives a general description of the type of functions which arise.
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Definition 1.1.3 Let F : E — R, with E C IR, and suppose that for all but an
isolated set of real numbers, D C R, F is n-times continuously differentiable, n > 0.
Further, at each point o € D assume that lim,|,, F*)(z) exists for k = 0,1, ...,n,
and define this limit to be the kth derivatfve of F at 29 € D. Also suppose that
limz1z, F(*¥)(z) exists and is finite for all zo € D, k = 0,1,...,n. Then, F is said to
be a C™*(E) function or one writes F € C™*(E).

Loosely then, a C**(E) function is a function which is n-times, piecewise right-
continuously differentiable, with left-hand limits, and only a countable (isolated) set
of points prevents it from being n-times continuously differentiable. This set of points
is called the set of breakpoints of the function.

The notion of monotonic sample paths introduced above is useful‘wheﬁ consid-
ering C!* functions of jump semimartingales. For instance, if one applies a right-
discontinuous function, such as the greatest integer function, to a right-continuous
jump semimartingale with piecewise nondecreasing sample paths, then the result-
ing process will be right-continuous. However, applying the same function to right- .
continuous semimartingale with piecewise nonincreasing sample paths yields a left-
continuous process.

The next result is an extension of the usual differential rule to include C1* func-
tions of locally finite variation semimartingales which have piecewise nondecreasing

sample paths.

Theorem 1.1.2 Let X be a (P, #;)-semimartingale of locally finite variation with
piecewise nondecreasing sample paths. Suppose a function F is given such that
F € C'*(E). Then F(X) is a semimartingale, and with equality denoting P-
indistinguishability [BREMAUD],
t
F(X,) = F(Xo)+ / F'(X,.)dX,+ 3 {AF(X,)-F'(X,0)AX.)}, t>0 (1.17)
Y 0<s<t

where AX; denotes X; — X;_ for all t > 0, any process X.
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Proof:

First note that the right continuity and left-hand limits of F are necessary in order
to yield a corlol process. To see this, consider an arbitrary w € (1. Let ¢ > 0, then,
because X is piecewise monotone increasing, there exist {t,}32, , tn | t such that
Xt (w) | X¢(w). But then F(X;, (w)) - F(X:(w)) because F is right-continuous,
and hence F(X) is continuous on the right. For emphasis note that in general,

lim F(z) = F(e—) # F(c) = l;?cl F(z) = F(c+) (1.1.8)

zte

It is clear that F(X;) has limits on the left. Similarly, the right continuity of F’ and
implied left-hand limits yield F'(X,_) locally bounded, and so the integral in 1.1.7
makes sense. )

Let D be the set of disjoint, consecutive open intervals constructed from the
set of breakpoints of F, say {di}, so that D = {...,(d-1,do), (do, d1), (d1, d2),...}.
"Write D; € D for D; = (diydiy1). Without loss of generality, suppose Xo € D;,
for some D;, € D. Define 7o as the first time after ¢ = 0 that X escapes D;,
ie., 0 = inf{t > 0 : th & (diy,dis+1)}. Now, as long as t € [0,75) , the usual
differential rule [SNYDER] for jump processes holds for F(X;) since F is assumed

strictly continuously differentiable on D;,. Hence for ¢ € |0, 70),
F(X:) = F(Xo) / F(X,-)dX,+ Y {AF(X,) - F(X,.)AX,)  (L1.9)
0<s<t
Since F(Xt) is corlol, then,

F(X,,_) = F(Xo)+ / F'(X,-)dX,+ Y {AF(X,)-F'(X,_)AX,} (1.1.10)

0<s<r9—

Decomposing dX, as dX, = dX; + AX, [WONG] one obtains,

T0 — To
/ F'(X,_)dx,zf F(X,)dX:+ ) F'(X (1.1.11)
0 0

0<a<19—
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Combining 1.1.10 and 1.1.11 yields,
F(X,,-) = F(Xo) + / K F'(X,_)dX:+ Y AF(X (1.1.12)
0 0<s<ro—
Now the possibilities as to whether X jumps a t = 7o and/or F has discontinuities
at X,,— and/or X, reduce to the cases AF(X,,) = 0 or AF(X,,) is nonzero but
bounded (implicitly F is locally bounded). Either way, 1.1.12 yields,

F(X,,_)+AF(X,,)=F Xo)+/ Fl(X,-)dX:+ ). AF(X,)+AF(X,)
0<s<rp—
(1.1.13)
and so,
70
F(X,,) = F(Xo) + / F'(X,)dX; + Z AF(X,) (1.1.14)
0 0<e<rg

Since X,;, € D;, for some D;, € D one can define r; = inf{t > 70 : X; & D, }.
Then, if t € [r0,71), Xt € D;,, and F is continuously differentiable there so, arguing
as before it follows that,
F(X,,2)=F(Xn,) +/ F'(X,-)dX:+ ). {AF(X,) - F'(X,-)AX,}
T <8<1‘2—
(1.1.15)
and from this,

F(X,,) = F(X,,) + /TIF'(X,_)dX§+ S AF(X,) (1.1.16)

70 70 <3<y

By induction, for any n € IN,
Tn
F(X,)=F(X.,_,)+ / Fl(X,-)dX:+ Y. AF(X,) (1.1.17)
Tn—1 'rn.-—1<35."'n
where 7, = inf{t > 1o—1 : X¢ & Di,}, and where D;, > X, _, . Performing the
recursion indicated in 1.1.17 one obtains, '

F(X,.) = F(Xo) + / TPX, )X+ Y AF(X,) (L.1.18)

0<s<ry,
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Note that 7, < 7,41, and that since X is of locally finite variation, X can only cross
0D a finite number of times in finite time, P-a.s. So if 7 is any stopping time which

is P-a.s.-finite, there exists no € IN such that 7 A 7,, = 7 P-a.s., and 1.1.18 yields,

F(X,) = F(Xo) + /0 "P(X,)dx:+ T AF(X) (1.1.19)

0<s<rt

or,

F(X,) = F(Xo) + / ' F'(X,-)dX,+ Y {AF(X,)- F'(X,-)AX,} (1.1.20)

0 0<as<r

Since 7 is any P-a.s.-finite stopping time, 1.1.7 follows from 1.1.20 a fortiori. [ |

Hence, the usual differential rule in the non-diffusion case holds under slightly
weaker conditions on the function F than are customarily imposed, if one is willing
to assume slightly stronger conditions on the sample paths of X. There are two key
ingredients to the proof. The first is that F must respect the sample path properties
of X such that F(X) is corlol. For example, if X has nondecreasing sample paths,
then F must be at least piecewise right-continuous. The second ingredient is that
X must have locally finite variation. This yields a boundary behavior which is suf-
ficiently simple to permit the argument to proceed as in the proof. Without this
assumption, for instance in the diffusion case, this type of argument is confounded at
the discontinuities, where such a process can cross the boundary infinitely often in an
arbitrarily small time period.

This concludes the general semimartingale results which will be needed in the
applications chapter. In the next section, a result is presented which will be necessary

in the hypothesis testing problem dealing with point processes.
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1.2 A Functional Differential Equation
The next theorem plays a key role in Bayesian hypothesis testing problem in the
case of point process observations.

Theorem 1.2.1 Let a, b, ¢, and » be given such that 0 < a < b < 1, and both ¢ and
u are positive. Suppose a function E(z) is given which is continuous for all z € (0, 1).

Consider the following functional-advance differential equation,
UR(z) =—-¢c z¢€(0,b), (1.2.1)

where the linear operator U is defined via,

w+1
U+

UR(z) = —z(1 — z)R'(z) + (v + z) [R( z) — R(:z:)] ,

where the boundary conditions are given by,

R(a) = E(a)
w1 (1.2.2)
R(a:) = E(a:) VZ (S {b, mb)
and with the functional requirement,
R(z) is continuous at each z € (0,b). (1.2.3)

Then a unique solution exists for all z € (0, b).

Proof:
Before getting into the details of the proof a short informal discussion will
be given, since problems of this type are somewhat peculiar (see [EL’SGOL’TS &

NORKIN]). Consider the fact that as long as z € [b — ﬂul—;—bll)-, b) that,

u+1
U+

vw+1
vtz

z), (1.2.4)

E(

z) = E(
and thus one may write,

R'(z) = F(z, R(z)) z e Jq[b), (1.2.5)
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where J1[b) is the stated semi-open interval and where,

u+z

F(:B, R) = G(.’B) - m ’ (1.26)
with G(x) a known continuous function given by,
¢+ (u+z)B(tle
G(z) = ( B ). (1.2.7)

z(1 - z)
Hence, if one can prove the existence and uniqueness of a continuous solution to

the ODE 1.2.5, with arbitrary initial condition, then the process may be repeated

inductively to the left, each induction step involving a proof of the existence and

uniqueness of an ODE with a different forcing function obtained from the previous
induction step. The induction process is continued until the ODE under consideration

lives on the interval containing z = a. On this interval, call it J,, the ODE solution

of interest is the one passing through (a, E(a)), which may or may not be an initial
condition for that interval. In either case, assuming a unique trajectory exists passing
through (a, E(a)), then this solution is extended to the right h%md endpoint of J,,
yielding a value for R at this point. This value of R is then taken to be the initial
condition for the solution obtained on the previousvinduction step. Note that matching
the value at this endpoint is justified since the proof of the existence and uniqueness
on the previous step was specified with an arbitrary initial condition. The process
of matching endpoints is then continued to the right until the starting interval J;[b)
is reached, at which time the matching procedure is terminated since one is not free
to choose the value of E(z) at z = b. However, after the induction step on J,, and
after the endpoint matching procedure, one will have proven the existence of a unique

continuous solution to the following problem,
UR(z)=-¢ z€[Ab)
R(z) = E(a) (1.2.8)

R(z) = E(z) Vze Job),



§1.2 A Functional Differential Equation 17

where A is the left hand endpoint of J,, and Jo[b) is the semi-open interval in 1.2.2.
The only difference between 1.2.8 and 1.2.1, is that the solution to 1.2.1 lives on all

of (0,b), whereas the solution to 1.2.8 does not. However, consider the problem,

A

UR(z)=-¢ z€(0,A)
R(z) = R(AT) (1.2.9)
R(z) = R(z) Vzel,.
If the existence and uniqueness of a continuous solution to 1.2.9 can be shown, then

by combining this and the result for 1.2.8, it follows that,
R(z) = R(z)1{z < A} + R(z)1{z > A}, -(1.2.10)

will solve the original problem.

The problerﬁ 1.2.8 will be handled first, dropping the tildes for notational con-
venience. To start, it is necessary to define the discretization intervals and towards
this end, consider the advance X defined as,

v+ 1
u+z

r=2 Dlz= z, "z = X" 1(Zz). (1.2.11)

If one asks that X! satisfy X! = £71¥ = £°, then this yields,

uzr

Tlp= ———
T uti-z

(1.2.12)
and £71! is called the one step retardation. For any z € (0, 1), it follows easily that,

0<X™z<z<E"2<1 Vn2>1, (1.2.13)

and hence the significance of the terminology ‘advance’ and ‘retardation’. With these

notions, one can define,

Jo[b) = [Z7", 2~ ("Vp) n >0, (1.2.14)
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as the nth discretization interval; this agrees with the previous definition given for
Jo[b) given above. Note that there will be occasion to use the notation J,(z), with the
. obvious interpretation. Observe that X ="z (X"z) is monotone decreasing (increasing)
and bounded below (above). Hence, there exists n = n, such that 2"} < a, and
such that this is the smallest such number satisfying the inequality. In the previous
informal notation then, J, = Jp [b), and A = ©~"b. Thus, the existence and
uniqueness of a soution to 1.2.8 will follow if one can prove this for solutions of

R} (z) = Fu(z,Rn(z)) z € Jy[b)

(1.2.15)
R,.(27™b) = Ry,
for each 1 < n < n,4, and in addition do the same for a solution of,
R‘:l.a (:D) = Fnu (z’ Rna (Z)) zE Jna (b)
(1.2.16)
Rﬂa = E(a)’
where in 1.2.15, R,, is an arbitrary constant and,
u+z
Fn(x, R) = Gn(Z) - -z(_]_——T)R, (17)
where,
¢+ (u+ z)Ru—y (ﬁ'—%z)
Gn(z) = (1= 2) , (1.2.18)
with,
Ry (z) = E(z) z € Jo[d). (1.2.19)

Let n=1, for the first induction step. Then it is a simple consequence of elementary

ODE theory that a unique solution to 1.2.15 exists passing through any point interior

to the set (J;[b),R). To prove a unique solution exists starting from the boundary

point (£715,IR), one can choose ¢; > 0 such that that Z—16—¢; > 0, and then define

J1(b) = (£~1b - €1, b). Using these open intervals, consider the auxiliary ODE,
R'(z) = Fy(z,B(z)) z € Jy(b)

(1.2.20)
R(Z7'b) = R;.
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Now apply ODE theory to 1.2.20. Specifically, Fi(z, R) is continuous for all
(z, R) in the open set (J1(b),IR). In view of 1.2.19, F; has a continuous first partial
derivative in R for all (z,R) € (J1(b),R). So, applying the standard results (see
HALE, Theorem 3.1), R satisfying 1.2.20 exists and is unique. Therefore, if one
defines the restriction,

Ri(z) = R(z) ze€Ji]b), (1.2.21)

then R, (z) uniquely exists satisfying 1.1.15 for » = 1. Notice from 1.2.15 that R} (z)
is continuously differentiable for all z € J,(b). Therefore, R;(z) and thence also
G2(z) is continuous there. The proof for any n < n, is the same as for n = 1 with
the following observations. First, realize that one can always find an ¢,, n > 1,
satisfying Z~"b — €, > 0, in view of 1.2.13. Thus for any n > 1, J,(b) is well-defined.
Second, from 1.2.17, it is clear that F,(z, R) has a continuous first partial in R for all
(z, R) € ((0,1),R), and hence this is true for all (z, R) € (J.(b),IR). Lastly, it should
be clear that Fy(z, R) is continuous for all (z, R) € (J» (b),]R) It is clearly true for
n=1, has been shown to be true for n = 2, and is true by induction in general. In
summary, a unique solution to 1.2.15 with arbitrary initial condition has been shown .
to exist for each n, 1 < n < n,. The proof of the existence of a unique solution
to 1.2.16 is the analogous. If a = X ~™<b, then the proof is exactly the same. If
a > X~ "eb, then there is no need to consider the auxiliary problem since then ‘a’ is
interior to J,_[b), and the proof follows directly.

To begin the endpoint matching process, note that since AFn is so well be-
haved for all (z,R) € ((0,1),R), then the solution on Jy,,[b) can be extended nat-
urally to include the right-hand endpoint (see HALE, Lemma 2.'1). Then define
Rn, _1(E~(e~1)p) = R, (2~("e—1)b). Continue this process of extension and match-
ing up to and including J2[b). The unique solution to 1.2.8, for a, b as given, has now
been demonstrated to exist.

To complete the proof, it is necessary to extend the solution continuously to the
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left, i.e., solve the problem given in 1.2.9. First observe that the solution to 1.2.8
can be extended naturally to the left-hand endpoint of J, [b) ( again, see HALE,
Lemma 2.1 ). Thus solving 1.2.9 is equivalent to proving the existence and uniqueness

of a solution to (hats removed for notational politeness),

R}, (z) = Fn(z, Rua(z)) z € J,[b)
(1.2.22)
Ro((2=(*"V5)7) = Ry,

for all n > n,, with R, 41 = R, (X7 ™b). The proof in this case is also by in-.
duction on the analogous ‘overbarred’ problem (see 1.2.20), where now J,(b) =
(E=", 2~ (*=1p1¢,), and again, €, > O can always be chosen so that Z—("~1p4e, <
1. This time, at each step of the induction, the solution is extended naturaily to the
left, providing an initial condition on the next induction step. Finally, since for any
z € (0,b), there exists a smallest n, such that ™™= < z, the solution to 1.2.9 is

secured. Recalling 1.2.10, the theorem has been shown. [ |

Corollary If in addition, E(z) is n-times continuously differentiable on Jo[b), n > 1,

then the unique solution to the problem is also n-times continuously differentiable

except possibly for z € {E7%b : k =0,..n}. Also, if R(b~) = R(b) for b given, then

R(z) is n-times continuously differentiable for alln > 1, and z < b.

Proof: Follows directly from 1.2.1; solve for the derivative and use induction. [ |
This concludes the current section and chapter. In the next chapter, the problem

of Bayesian sequential hypothesis testing is presented.



Chapter II
Bayesian Sequential Hypothesis Tests

2.0 Introduction

In this chapter, the Bayesian sequential hypothesis testing problem is presgnted. The
first section establishes the probabilistic framework which will be used throughout the
thesis. In addition, the class of possible solutions to the sequential hypothesis testing
problem is defined. Within this class of so called admissible policies, is the class of
threshold policies which is also defined. The second section gives the particulars of
the general Bayesian problem, however, only the binary case is presented. The Bayes
risk is defined and is shown to be concave.

In section 2.3, the first steps are taken to reduce the complexity of the mini-
mization problem posed by the Bayes risk. Theorem 2.3.1 shows that for any policy
% = (1",5) € U, one can replace § with a certain F;-measurable random variable and
by so doing obtain a new policy whose risk is not larger. The immediate consequence
is that the infimum over all admissible policies is no smaller than the infimum over
their first component. Further insight is gained in Theorem 2.3.2 which helps charac-
terize the form of the risk. Next it is shown that threshold policies are unchanged by
the replacement procedure of Theorem 2.3.1 — an obvious property to check before
attempting to prove that such policies are optimal. The chapter ends by demonstrat-
ing that policies invariant under Theorem 2.3.1, and in particular threshold policies,

have terminal errors whose sum is bounded by one.

21
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2.1 Preliminaries

In this section, the problem of testing two statistical hypotheses will be presented
using the Bayesian risk approach. The following probablistic framework forms the
starting point of the investigation.

On a measurable space ({2, ), there are given two additional probability mea-
sures P; , i=0,1. One is given a filtration {O; : ¢t € T}, where T C [0,00) is the
time parameter set, either continuous or discrete. If T' = [0, 00), then O, is taken to
be right continuous. The O, filtration should be thought of as being the history of
some observable process. There is also given ©, the hypothesis parameter set. For
instance, in the simplest case of binary hypotheses, ©® = {#,, 6, }.

The general hypothesis testing problem can be loosely described as discovering
a plan, or policy, which dictates when to stop and what to decide, based upon the
available information, and which also satisfies a given performance criterion. Any
policy then, ought to be a pair consisting of a stopping time and a deciding rule, and
an optimum policy is one which achieves a specified performance. In view of this, it is
clear that in seeking optimum policies, the search is naturally limited to a class of can-
didate policies whose membership in the class, or admissibility, is defined by practical
measurability requirements. That is to say, each component of an eligible policy pair
should at least, and at most, be measurable with respect to some o-algebra which
contains all the information that might possibly be observed. A natural definition of

admissible policy then, is given in terms of the observation filtration, O; .

Definition 2.1.1 An admissible policy, u, is a pair, v = (r,6), where 7 is an 0;-
stopping time taking values in T, and § is a (P, 0,)-random variable taking values in
©. The class of admissible policies will be denoted as U.

In the binary hypothesis testing problem, the choice of u € U prescribes a policy
which specifies, via r, when the observation is to be terminated, and specifi‘es via 4,

which hypothesis is to be accepted. That is to say if § = 7, then the hypothesis § = §;
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will be accepted, + =0, 1.
An important subclass of admissible policies are the threshold policies. This is

due both to their simple specification and remarkable optimality properties.

Definition 2.1.2 Let X be an Oi-adapted, R-valued process. An (X, I)-threshold

policy @ € U is a pair, @ = (7,46), where,
F=inf{t>0: X; ¢ I}

and,
1 Xz2>b

o
I

0 X;<a
where a < b are the thresholds, and I = (a,b) is called the threshold, or con-
tinuation interval. The class of threshold policies will be denoted as U; note that,
U CU. Ifa = b, the threshold policy is said to be degenerate and one defines 7 = 0
- and § =1 if Xo = b.

Observe that for a given filtration, there are as many possible threshold policies
as there are ways to choose a pair (X, I) which satisfies the definition. For a given
O:-adapted process X however, the hope is that one can find a priori a particular
threshold pa.ir‘such that the threshold policy so defined is optimal in some sense.
For our purposes, X will be taken to be either a certain a posterior: probability
or (log)likelihood ratio process, the important similarity being that they all satisfy
Theorem 1.1.1. As a matter of style, the policies in Definition 2.1.2 will be called
simply ‘threshold policies’ when there is no ambiguity in either the reference process
or threshold interval.

Consider an arbitrary admissible policy » € U. For each w € (1, the policy
u = (7,6) can be described very generally as incurring two kinds of losses, one due
to the cost of waiting to decide, and the other due to making a wrong decision. A

reasonably general characterization of the cost of the observation time, or running
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cost, is given by fof ¢y ds, where {c;, t > 0} is some O;-adapted process which serves
as a suitable cost measure. For instance, ¢; = ¢ > 0, a positive constant, is often
chosen with the intention of using an apparently simple running cost to capture the
behavior: ‘the longer it takes to decide, the more it costs’. Of course, this is not
the only cost process which captures this behavior, nor is it necessarily simple, for
the simplicity of a running cost is often best judged not by its specification, but by
how easily it yields to mathematical analysis. Indeed, a fundamental tradeoff in the
modeling aspects of a sequential testing problem is choosing a running cost which can
be worked with mathematically, and still captures a desired behavior.

Next, consider that each admissible policy can make two types of incorrect deci-

sions,

6=0 while 0=20,
6§=1 while 8=40,.
Naturally, it will be desirable to include in the total cost structure a penalty for
each of these events and then minimize in some way the total cost, and in this sense
minimize the probabilities of these efrors.
This concludes the section. In the next, the discussion will focus on the details

of the Bayesian formulation.
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2.2 Bayesian Formulation

Let 8 be a {0,1}-valued, 7-measurable random variable, § : @ — ©. Fix an

arbitrary m € [0,1] and define a probability measure Py on ({1, 7) via,

Pfw :0(w)=1}=7 , Pp{w:0w)=0}=1~m, (2.2.1)
such that for each set A € 7 there holds,
‘ Pr{A} =P {A}+ (1 — m)Po{A}. (2.2.2)

. In words, it is assumed that 8 is a binary random variable taking on the values zero
or one with the a priori probabilities 1 — m and =, respectively. The a posterior:
probability of the # = 1 hypothesis is then defined as m, = P,{0 = 1|0;}, t € T, and
since Og = {0, 1}, it follows that Py{mo =7} = 1.

Consider an arbitrary admissible policy v« € U as defined above. For each w € {2,
the policy w = (r,6) can be described as incurring two kinds of losses, one due to
the cost of waiting to decide, the other due to making wrong decisions. On average
therefore, a natural definition for the average running cost is given by E,| fOT csds],
where {c¢,t > 0} is some nonnegative O;-adapted process which yields a desired cost
behavior.

To describe the cost of making wrong decisions, define

® if 0=1,6=0; >0
w(0,8) =< ¢ if 0=0,6=1; ¢',>0 (2.2.3)
0 if 6=4,
yielding the average cost of incorrect decisions as E,[w(f,6)]. Observe that it is
without loss of generality in the search for an optimal policy that there is no cost

levied for correct decisions in 2.2.3. Now, one can easily show that

Er[w(8,6)] = ®nP {6 =0} + ¢ (1 — 7)Po{6 = 1}.
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Putting the pieces together yields,
T
p(m,u) = Ey | / ¢ods -+ w(d, 6)] (2.2.4)
0

as the total Py-average Bayesian cost, or risk, of the policy v = (7,6). By definition
it is clear that p(r,u) is nonnegative for all r € [0,1] and u € U, and therefore the

Bayes risk, or cost, given by,

p(r) = ‘irelg p(m,u) (2.2.5)

is nonnegative and exists for all 7 € [0, 1]. For a particular 7 € [0, 1], one would like
to find a v € U which minimizes the risk at that prior. From 2.2.5 it is easy to show
that
p(0) =0 = p(1), (2.2.6)
and thus for = € {0, 1}, an optimal policy is v = (r,§) = (0, 7), i.e., stop immediately
and decide w. Obviously this trivial policy is not optimal for other values of 7, but any
rival policy which is must behave as u for v € {0, 1}, i.e., it must stop immediately
and decide .
From 2.2.5 it also follows that p(7) is concave. This important observation is

recorded in the following theorem for future reference.

Theorem 2.2.1 The Bayes risk (2.2.5) is concave in 7 on [0, 1].
Proof:

Combine 2.2.1-2.2.4 to get,

p(ryu) = [El[/of ¢sds + cOm 1{6 = 0}] - Eo[/or csds+c'(1—-m)1{6 = 1}]] - =

+Eo[/01 esds + ¢t (1 - m,)1{6 = 1}}.

With this in mind, it follows that for any o« € (0, 1), and =/, " € [0, 1],
plar’ + (1 - a)r") = 122 plar’ + (1 - a)n",u)
w

> : ! _ . n
> a&xelg p(r,u) + (1 - a) &gfl'tp(w ,u)

= ap(r’) + (1 - a)p(r"),
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The desired result. |
The following definition serves to characterize the optimality of admissible poli-

cies for the Bayesian formulation.

Definition 2.2.1 Let I C [0,1]). The policy uv* € U is said to be I-Bayesian if
p(myw*)=p(r) Vrel (2.2.7)

If w* € U is [0, 1]-Bayesian, it is said to be Bayesian.

Consider that any reasonable, admissible policy will be at least {0, 1}-Bayesia.n,
and so for convenience of notation, I will be understood to denote I U {0,1} unless
noted otherwise. Given this definition, one of the principal goals of this thesis can
be succinctly stated as demonstrating that there exists a threshold policy, say with
thresholds @, b, @ < b, which is at least (a,b)-Bayesian, and preferably Bayesian, for
a given observation filtration. It is this goal of demonstrating the existence of such a
threshold policy and thresholding interval which motivates the use of the suggestive
‘I’ notation in the definition.

For completeness, one technical assumption perhaps deserves mention. In 2.2.3
it is assumed that both costs for wrong decisions are strictly positive. This is done to
avoid degenerate cases for which no Bayesian threshold policy exists or is unique. For
insténce, let ¢ € {0,1} and suppose ¢! = 0, while the other cost is nonzero. Then it
is easy to show that the policy u; = (7, 6;) = (0,7) is ([0, 1]-) Bayesian. It also follows
that there exists no threshold policy which is Bayesian optimal (consider = = |s — 1|).
Likewise, if ¢® = ¢! = 0, then any policy with stopping time 7 = 0 Py-a.s.Vr € [0,1]
is Bayesian, and this includes all the degenerate threshold policies.

This concludes the section. The next section begins by showing how the infimum
over all admissible policies apbea.ring in 2.2.5 can be replz;ced by a much simpler
minimization. This result is the first to reveal‘ why threshold policies enjoy their

special status.
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2.3 Optimal Stopping

Having considered basic notions of Bayesian hypothesis testing in the previous sec-
tions, the focus here is to lessen the complexity of the search for the optimal policy.
Towards this end it is shown in Theorem 2.3.1 that finding a Bayesian policy can
be reduced to a problem of optimal stopping, i.e., one can restrict the search for the
optimal policy, an infimum operation over both policy components, to a search for
an optimal stopping policy, an infimum operation over the stopping time component
alone. This is accomplished by showing that any policy pair can be replaced by an-
other pair whose risk is no larger. The new pair is obtained from the original by
replacing its decision component with a new decision variable which has an explicit
representation in terms of the a posteriors probability; the stopping time component
is kept the same. This yields a simpler expression for the Bayes risk which is then
exploited to discover more of its structure. Also, the question arises as to the effect
of the replacement procedure in Theorem 2.3.1 on threshold policies, and it is shown
that such policies remain unchanged—an obvious property to check before one tries
to prove that threshold policies are Bayesian! Prior to this, the theorem is used to
further characterize the risk as was begun in Theorem 2.2.1. The section ends by
showing that the sum of the terminal 'errors for a threshold policy are bounded by

one. The next theorem is a generalization of Lemma 4.1.1 in [SHIRYAYEV].

Theorem 2.3.1 Let @ = (7,8) € U be arbitrary, and define w = (1,6) € U via, 7 = 7

and,
1 x> c(1-m,)
§ = (2.3.1)
0 lrm<ct(1-m,).

Then, for all = € [0,1],

p(m, i) > p(m,u) = Ex [/C;T csds + e(my)] (2.3.2)
where,

e(r) = min{c’m, c' (1 - )}, (2.3.3)
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and {c; : t > 0} is an O;-adapted, nonnegative process.

Proof: If 7 = 0 or 1, then the assertions are easy to check, so suppose 7 € (0,1).

From definition 2.2.1, it is clear that since {5 =1} € O7 for ¢ = 0, 1, there holds,

Ex[1{6 = 0}1{0 = 1}] = E,[1{8 = 0} E,[1{0 = 1}|03]]

i (2.3.4)
= E.[1{6 = 0}m;].
and similarly,
Ep[1{§ = 1}1{0 = 0}] = Ex[1{6 = 1}(1 — m5)]. (2.3.5)
So, combining 2.2.3, 2.2.4, 2.3.4, and 2.3.5 yields,
; -~
p(m, &) = E,,[/ csds + w(4, )]
0
:i. - a~
=E,,[/ cods + O1{8 = 0}1{0 = 1} + ' 1{§ = 1}1{6 = 0}] .
0
= ,..[] cods + (1 — 8)ms + c16(1 — 77))] (2.3.6)
0
T ~ -~
= E',,[/ csds + ¢®(1 — §)m, + 6 (1 — =)
0
,
> E,..[/ csds + e(m,)] = p(m,u),
0
and the theorem is shown. |

Observe that the theorem is very general. No assumptions were made regarding
the continuity of either the time parameter or state-space; one has only to interpret
the integrals in the proper way. The extension to multiple hypotheses is tedious
but straightforward. In addition, notice from definition 2.1.2 that a threshold policy
(7,8) € U is entirely specified by its first component (via the thresholds). That
is to say, if 7 is given, 6 is completely determined, a characteristic not shared by
admissible policies in general. The theorem however shows that in minimizing the
risk, the infimum over all policies is no smaller than the infimum over all policies

which share this characteristic. This is a welcome simplification of the problem for it
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says that in the search for Bayesian decision policies, one need only consider policies

u = (7,6) with 6 given by 2.3.1 and with the risk given by,
PUm) = inf plr) = fal o(r.7),

where,
p(m,7) = By [/0 csds + e(m,)], (2.3.7)

and where T denotes the class of O;-stopping times. In fact, without loss of generality
it is sufficient to take T to be the subclass of Pr-a.s. finite stopping times if the

following technical condition holds,

(T): E,,[/Ooo csds] = oo.

Intuitively, the condition (T) is entirely natural since it is unusual to impose a running
cost which fails to force decisions in finite time in problems of sequential hypothesis
testing. As a result, it will be assumed throughout the remainder of this thesis that
condition (T) holds. As a sidenote the reader should be aware that the cost due to
making wrong decisions is often called the ‘terminal cost’ in the Bayesian formulation.
This usage is a direct consequence of the theorem, and equation 2.3.1 in particular.

To motivate the next theorem, consider the set defined via,
Co = {m : p(7) < e(m)}.

The set Cy is called the natural continuation set for the obvious reason that one
honestly expects to continue collecting data as long as the risk is less than the terminal

cost. In addition to Cp, one can define the natural stopping set as,

So={ : p(r) = e(r)},

without loss of generality (see Theorem 2.3.2 below). It is easy to see that the two

sets are disjoint and that their union is the whole interval, [0,1]. Now because the
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goal is to prove that threshold policies are optimal, it had better be the case that Cy
is an open and connected set since one believes intuitively that the stopping interval
of a threshold policy ought to be identical to Co, if the policy is Bayesian. This and
more is shown to be true in the theorem below using the simpler form of the risk

given in 2.3.7.

Theorem 2.3.2 Let 7, = ;bc_'_—lcr, i.e., the (unique) point at which e(m) attains its

maximum value (e(m.) = E‘f%%—) Then there exist two numbers a. and b, where
0<a,<m <b. <1, (2.3.8)

. and such that the Bayes risk satisfies,
p(r) < e(r) V€ (ax,bs)
cp(r)=e(xr) Vrel0,1]\ (as,b.).
In addition, p(r) is continuous on [0, 1].
Proof:

In view of the fact that e(r) is concave, for any m € [0, 1] an easy consequence of

Jensen’s Inequality is,
T
p(r) = 1}élfl_ E,r[/o csds + e(m,)]

< inf [E /0 ¢o ds + e(Ey[m])]

T
=32-frE" ] cs ds + ()

= e(),

using the obvious fact that {m: : ¢ > 0} is a uniformly integrable martingale. Thus,
p(r) <e(r) Vrelo,1]. (2.3.9)

Now since ¢(0) = 0 = (1), it is clear from 2.2.6, the concavity of e(r), and 2.3.9 that
p(r) is continuous on [0,1]. This inequality also justifies the definition of Sp given

above.
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It is now geometrically obvious that there exist the two numbers ax and b, as
claimed, nevertheless one can argue as follows. If S; = [0,1], then Cp = @ and
choosing a, = m, = b, yields the result. If Sp = {0,1}, then Co = (0,1) and choosing
@ = 0, b, = 1 does the same. Otherwise, choose 7’ € Sp, 0 < 7' < 1, and suppose

7! < m.. Then the following is true,
p(r')y=e(r')=>nr€S Vr<a' <, (2.3.10)

for if not, there exists # < n' such that # € Cy, implying p(%) < e(7). But this
violates the concavity and continuity of p(m) on [0,1]. To see this, choose o € [0, 1]

such that

and then,

> p(f),
a contradiction. The same contradiction is derived if one supposes n' > =, and

therefore the following is also true,
p(r') =e(r)=>m€S Vr2a' >, (2.3.11)

Having established 2.3.10 and 2.3.11, it is now simple to obtain the final case. It is
clear that Cg is an open set so choose 7/, " € Cy, with 7' < 7", and of course assume

Co # @. Now if Cp is not a connected set then there exists a € (0,1) such that

ar’' + (1 - a)r" € So,
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whence at least n' € Sg or n'" € Sy in view of 2.3.10 and 2.3.11. A contradiction
results in either case. Hence, Cp is an open interval and therefore take a,, b, to be
its right- and left-hand endpoints, respectively. ]

The preceding theorem has shown that the natural continuation set is an interval
and is therefore the primary candidate upon which to base a threshold policy, but
there are special cases to consider. If Cp is an empty interval, then p(7) = ()
and the identically zero stopping time is clearly Bayesian optimal. Obviously the
degenerate threshold policy with thresholds e = #, = b is also Bayesian optimal in
this case. On the other hand if Co = (0, 1) then there is no optimal threshold policy.
To see this, pick an arbitrary threshold policy % € U, with thresholds 0 < a<b<l
Choose 7 € 3, (a,b) and suppose 7 ¢ {0,1}. Then,

E,,[/OT ¢y ds + e(mz)] = e(m) > p(w).

Thus % is not {r}-optimal and therefore cannot be Bayesian optimal. Alternatively,
choose (a,b) = (0,1) to be the thresholds. Then 7 = co, Pr-a.s. Vr € (a,b), and in
view of (T),

E,r['/: ¢sds + e(m7)] = oo,

which is clearly not an optimal policy. Similarly one can show that if one endpoint
of Cy is zero or one, then no optimal threshold policy exists. In the remainder of the
thesis therefore, these special cases are of no consequence and it will be assumed that
the class of threshold policies U is further restricted to those policies whose thresholds

obey the following inequalities,
(I) 0<a<wn.<b<1l; a<hb,

where 7. = arg max,¢(o,1] ¢(7). Put another way, under condition (I), if & € U, then
0 <7< oo, Pr-as. V7 € (a,b). For the remainder of the thesis the notation I

will be used with the implicit understanding that Iy = (a,b) satisfies condition (I).
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A short recapitulation is in order. Theorem 2.3.1 showed that any policy could be
replaced by another which wpuld do no worse and this lead to a simpler expression
for the Bayes risk. Using this simpler form of the risk, the last theorem yielded more
insight into the structure of the risk. But Theorem 2.3.1 raises another point. In light
of that theorem, a natural question to ask is what policy results when a threshold
policy (7,8) is exchanged for the policy (7,6), with 6 as in 2.3.1. If @ is a threshold
policy based upon the a posteriors probability, the next theorem shows that (7,§)

and (7, 6) are identical.

Theorem 2.3.3 Let Iy = (a,b) (satisfying condition (I) above), and consider the
threshold policy (7,8) based on Iy and {m; : t > 0} (see def. 2.1.2). Then,

bw)=6w) Ywen,

with 6 as in Theorem 2.3.1.

Proof:
Suppose w € 1 is such that, m5(,)(w) > b, and therefore §(w) = 1. Then from

2.3.1,
7 S b ]
1—7|"ql —1-%

On the other hand, b > ¢!/(c® + ¢!), and so,

el

LI
1—-b7 ¢0°

Thus 77 > b implies %7z > ¢1(1 — m¢), and thus §(w) = 1. Now let w € Q be such

that §(w) = 1, implying,
W?(w)(w) S c!
—el s >
1- Wf(w)(w) c
so that upon rearranging one obtains,
1

c

> a
0+ ¢! ’

Tr(w){w) 2
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and therefore §(w) = 1. From this one concludes that,
fw)=1<=bw)=1 VYweq.

Similarly, one can show,

This completes the argument. |

The fact that threshold policies are invariant with respect. to Theorem 2.3.1
allows one to prove the next interesting result. Clearly, the proof below depends on
this invariance properfy alone, but it will be stated only in terms of threshold policies

for emphasis.

Theorem 2.3.4 Let @ € U be a threshold policy. Then,

P{6=1}+P{§=0}<1.

Proof:
From Theorem 2.3.3 there holds,

E,,[/: csds+w(8,8)] = E,,[/; cs ds + e(m3)],

and therefore,
rP {8 =0} + (1 — ) Po{b = 1} = E,[e(ms)] < e(n), (2.3.12)

where the iriequa.lity follows as in 2.3.9. Suppose 7 < 7, and thence e(m) = c°r. Then
2.3.12 implies,
0<cr(1-P{§=0})—c}(1-nm)Po{6 =1}
< (1-P{§=0})-c!(1~7n)P{6 =1}

=e(m.)[l - (Po{6=1}+ P {§ = o})].
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The same inequality is obtained if one supposes that # > x,. Thus except in the

excluded cases (c%! = 0) it follows from the fact that e(7.) > 0 that
"P{6=1}+P{§ =0} < 1,

and the theorem is shown.

Corollary Suppose v = (7,8) € U is Bayesian and

Py{6=1}+Pi{§ =0} =1.

Then, the degenerate threshold policy with thresholds a = b = m, is Bayesian with

risk p(7) = e().
Proof:

Observe that,

E,,[/Of cads+ c®rP {6 =0} +c' (1 - m)Po{6 = 1}] = p(n) < e(r) Vrmeo,1].

Thus,
0<E, f "erds < e(m)[1 - (Pof6 = 1} + P {6 = 0},

arguing as above; and therefore,

E,,/ ¢, ds = 0.
0

As a result,

p(r) = P {6 =0} + (1 — 7) P {6 = 1},

so if m > 7, one can show
p(m) > e (1 — ) = e(n);

and similarly if r < 7,
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Hence p(7) = e(r) Vm € [0,1]. This same risk is achieved with the stated degenerate
threshold policy. This completes the proof. . |

Obviously, it is necessary that any Bayesian optimal policy satisfy the last two
theorems. In the general excessive function theory approach [SHIRYAYEV] to
optimal stopping, one defines at the outset the Bayesian stopping time candidate in

terms of the natural stopping set as,
r=inf{t >0 : m € Sp}

with the intention of using Theorem 2.3.1 to define the decision component. Such a
policy is seen to satisfy the consequents of the last two theorems. Assuming one can
prove under given conditions that 7 is Bayesian, then the task necessary to demon-
strate that a threshold policy is optimal becomes precisely one of showing that Cy
is open and connected. These properties of Cy have already been established and
so 7 as defined above is indeed the stopping time of a threshold policy. Now, to
prove directly that this stopping time is Bayesian, one can use the excessive function
approach, but this requires ‘rather deep results from the general theory of Markov
processes and martingales’ [loc. cit. 113}, in general. Alternatively, one might try to
discover simple sufficient conditions which yield optimality and then show them to
hold in a parti.cula.r application. In the next chapter, such a set of conditions is set
forth, one which is sufficient to prove the existence of a Bayesian threshold policy.

This concludes the section and chapter.



Chapter III
Sufficient Conditions for Bayesian Optimality

3.0 Introduction

The purpose of this chapter is to identify the conditions under which threshold policies -
based on the a posteriori probability are Bayesian optimal, and indicate how to use
them in a particular application to demonstrate optimality as well as compute the
thresholds. The chapter is organized as follows.

Section 3.1 gives a set of three conditions which are sufficient to guarantee that
threshold policies are Bayesian. Two lemmas are given which help characterize the
risk and the continuation interval. The main theorem, which is based on these lemmas,
then demonstrates the sufficiency of the conditions mentioned.

In a particular application, the first two sufficient conditions are obtained by con-
struction as will be shown in Chapter IV. A direct verification of the third condition
is difficult in general, so in section 3.2, auxiliary conditions are given which allow one
to obtain the third condition from the other two. The chapter ends with a section

discussing an alternative set of sufficient conditions.

3.1 Sufficient Conditions

The purpose of this section is to spell out a set of three conditions which are sufficient
to prove that there exists a unique threshold policy which is Bayesian. From the

last chapter, it is clear that the process of fundamental interest is the a posteriors

38
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probability process {m: : ¢ > 0}. In the remainder of this chapter it will be assumed
that {m; : t > 0} is in fact a standard Markov process [DYNKIN].

Since the goal of this thesis is to demonstrate the optimality of threshold policies,
it is natural that the topic of first exit times of a process from an op'en interval should
arise. In turn then, it might be expected that the notion -of characteristic operator
should appear. This is indeed the case.

Let U denote the characteristic operator [DYNKIN] for the a posteriori prob-
abilit;' process {m; : t > 0} and D(U) denote its domain of definition. Now given
that {m; : ¢ > 0} is as above, suppose that r E [0,1] — IR satisfies the hypotheses of

a generalized Itd rule for this particular {m; : ¢ > 0}, so that one can write

r(m,) = r(mo) = /0 " Ur(ry)ds + M, (3.1.1)

for all (Py, 7:)-stopping times satisfying Er[r] < oo, where M is some Py-local martin-
gale. Finally. let Iy C [0, 1], strictly, be some nonempty, open interval and r € D(U)

- be such a function. Consider the following set of conditions on the pair (r, Ip):

(C1): Ur(r) = —¢(m) v € (0,1);
(C2): r(r) = e(m) Vr € 9y Io;
(C3): r(m) < e(m) V& 9, L.

In a particular application, the first two conditions pose a generalized Stefan
problem [SHIRYAYEV] which does not have a unique solution in general. The third
condition serves to constrain the problem so that its solution is essentially unique, as
will be described below. Notice that the function r(r) is like a Dynkin function in
that it satisfies (C1), is similar to the risk function in as much as it satisfies (C1) and
(C2), but differs from both in the additional requirement (C3). The remainder of this

section is devoted to proving that the conditions (C1)-(C3) are sufficient to guarantee
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that there exists a threshold policy which is Bayesian. The first lemma goes a long

way towards showing this.

Lemma 3.1.1 Suppose there exists a pair (r, Io) satisfying the conditions (C1)-(C3).
Then,
p(r) = r(m) Vr € [Io)n, (3.1.2)

where p(-) is the Bayes risk.

Proof:

First note that (C2) and (C3) together imply,
e(r) 2 r(m) Vr € [0,1]. (3.1.3)

Next, in view of (C1), one obtains,
p(r) = inf p(m,7)

= inf B /0 " o(ms) ds + e(m)] (3.1.4)

=r(r) + Tlélg_ Exle(r,) —r(m)] Vreo,1].
Hence, combining 3.1.4 and 3.1.5 yields,
p(w) > r(x) Vr € [0,1]. (3.1.5)
On the other hand, if one defines the (Py, O;)-stopping time 7 as,
T=inf{t >0 : m & Ip}, (3.1.6)
then, from (C1) and (C2) it follows that,
p(m,7) = r(m) Vr € [Io)s. (3.1.7)

Thus, 3.1.5 and 3.1.6 together yield,

p(r) = r(w) Vr € [Io]x, (3.1.8)
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and the lemma is shown. [ |

Because of 3.1.8 and (C3), it is convenient and suggestive to call 7(-) the subrisk.
Likewise, it is appropriate to call Iy the continuation interval.

The next lemma shows that if there are two pairs, say (r, Iy) and (s, Jo), which
satisfy the conditions (C1-C3), then Ip = Jo and r(r) = s(x), V7 € [Iy],. This is
called essential uniqueness because, as it will be shown, the nonuniqueness of r(r)
off of [Io], is irrelevant to any questions concerning the risk. This is fortunate since

7(m) is not in general unique there.

Lemma 3.1.2 Suppose there exists a pair (r,Io) such that the conditions (C1-C3)

hold. Then (r,Iy) is essentially unique and in particular, Iy = Cp.

Proof:
To prove the theorem it is only necessary to show that Iy = Cy, in view of the

previous lemma. Pick any 7 € Ip, and observe that
p(r) =r(r) < e(r),

in view of Lemma 3.1.1 and (C3), and so = € Cq. Thus Iy C Cp, and claim Iy = C,
for if not dIp C Cp. In this case, choose 7 € 8y and note 7 € 8,15 C [Io]x. From

Lemma 3.1.1 and (C2) then

But m € Cj also, implying p(7) < e(r) which yields the contradiction. |

Corollary Under the same assumptions,

p(r) = e(m) Vrdly (3.1.9)

Proof: Immmediate from the lemma and Theorem 2.3.2. | |
The preceding lemmas are the main ingredients to the principal optimality result

proved next. To summarize, Lemma 3.1.1 showed that the three conditions imply that
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the risk and the subrisk are identical on the 7-closure of the continuation interval.
Hence, by itself the lemma suggests that threshold policies are at least [Io],-Bayesian.
Lemma 3.1.2 and its corollary showed that the risk equals the terminal cost outside

of the continuation interval. Putting the two lemmas together yields the following.

Theorem 3.1.3 Suppose there exists a pair (r, Iy) satisfying the conditions (C1-C3).
Then the threshold policy based on Iy is Bayesian.
Proof:

Suppose (C1),(C2), and (C3) hold, and define 7* = 7 as in 3.1.6. Then 3.1.7 and
3.1.8 give,

p(m,7*) = p(w) Vr € [Io]n, (3.1.10)

i.e., 7* solves the optimal stopping problem for all = € [Io|r. Since 7* is of threshold
type, it follows that the policy u* = (7*,6*) exists and is [Io],-Bayesian, where é* is

given by,

5 = 1 ifmwe >0
— 10 if 7w <a,

for Iy = (a,b).’

It follows from Lemma 3.1.2 that,
p(r) = e(r) Vr ¢ I. (3.1.11)
On the other hand, 7* = 0 Pr-a.s.Vr ¢ Iy, and then,
-
p(m,7*) = E',r[/ c(ms)ds + e(mre)]
0

— E,,[O-}-e(’)r)] (3.1.12)

= e(m).
Hence 7* solves the optimal stopping problem for all m# ¢ I;. Combining this fact

with the above argument for 7 € [Ip],r shows that there exists a policy, in particular

u* = (r*,6*), 7* as in 3.1.6 and 6* as above, such that u* is Bayesian. - |
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Thus, in order to prove that there exists a Bayesian threshold policy, one need
only exhibit a subrisk-interval pair satisfying the three conditions. In practice, one
constructs'a family of pairs whose members all satisfy .the first two conditions. The
remaining difficulty is to show that there exists within this family at least one pair
which enjoys the third condition. An existence proof is all that is necessary here in
view ?f the essential uniqueness property. In the next section, auxiliary conditions

are given which allow one to obtain {C3) from (C1), (C2) and properties of the pair

{
which are more readily verifiable.
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3.2 Auxiliary Conditions

In the last section, the goal was to demonstrate the sufficiency of the conditions (C1-
C3) in proving that threshold policies are Bayesian. The emphasis in this section is
to replace condition (C3) with properties of the subrisk and the continuation interval
which are more easily verified. Such auxiliary conditions play a primary role in ap-
plications, by providing characterizations which guide the search for the (essentially)
unique subrisk ‘a.nd continuation interval pair obeying (C1-C3).

The next theorem is very important in applications in that it provides a way to
demonstrate tl‘le concavity of the subrisk based on its smoothness properties, quite a
bargain since a direct proof of concavity can be much more difficult than a verification
of smoothness. Note then the intimate connection between this theorem and the

condition (C3) in an applications setting.

Theorem 3.‘2.1 Let r(r) exist satisfying (C1), and suppose r(m) is continuous on
[Zo]x. Then r(m) is concave on [Io], if r € C2¥([Io]x)-
Proof: -

The proof will proceed by contradiction. Suppose r(r) is not concave on [Io].

- Then it is strictly convex on some subinterval J C [Ip|, in view of the fact that

r € (C°N C%*)([Io]x). Define,
g =inf{t >0 : m & J}, (3.2.1)

and suppose mg € J, Pr-a.s. Now, consider any stopping time 0 € T, where 0 < ¢ <

77, Pr-a.s. Since r(r) is strictly convex on J, one obtains,
Er[r(ms)] = r(Ex([r,]) = r(r) T eJ, (3.2.2)

where the inequality is an application of Jensen’s Inequality, and the equality follows

since {m; : ¢ > 0} is a uniformly integrable (P, O;)-martingale. On the other hand,

Ur(r) <0 == E.[r(m)]<r(xr) VreT,rec[lr (3.2.3)
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i.e., condition (C1) guarantees that E,[r(w,)] is bounded above by its initial value
(indeed, it can be shown that r(m:) is a (P, O)-supermartingale). As a result, the

strict convexity of r is a clear contradiction, and therefore r(r) is concave on [Ip],. B
Corollary If in addition r(r) satisfies (C2), then r(r) is continuous on [Iy)«
Proof: Immediate from the theorem. |

The next theorem is used in the applications to follow to obtain the condition

(C3) from the conditions (C1) and (C2), and properties of the subrisk function.
Theorem 3.2.2 Let there exist a pair (r, Io) satisfying the conditions (C1) and (C2),
and suppose r € (C° N C?+)([Io]x) is right continuously differentiable on (0,1). With
Iy = (a,b) assume that,

() < ¢(a)
(3.2.4)

Then,

Proof:

From Theorem 3.2.1, r(w) is concave and continuous on [Io]x. Thus,

r(m) < la(7) v & (Lol
where,
lo(m) =r(a) +r'(a)(7 - a).
Likewise,
r(m) < Ly(x) V& [Toa
where,

by(r) =r() +r'(b7)(r — a).

From condition (C2),
la() = ¢(a) +7'(a) (m - a),
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and so from 3.2.4 it follows that

r(r) < e(m) Vre (a,m,.
Similarly,

r(r) < e(m) Vr € [r,,a),

and so the subrisk is upper bounded by the terminal cost on [Io],. Now arguing as
in Theorem 2.3.2 with the subrisk instead of the risk, one can show that there exist

two numbers a,, b, such that,
0<a<a,<m.<b<b<1

where,
r(m) < e(m), Vr e (ar,b,);

r(r) = e(w), Vr € (a,a,] U[by,b).
Now if one can show that a, = @ and b, = b, then the proof will be complete. To this

end suppose b, < b and choose 7 € [b,,58) C Ip. Then
U(r(r) —e(m)) =0,

and so,

Ue(r) <0,

in view of condition (C1). But e(x) is affine on [b,, 1] yielding the contradiction,
Ue(r) =0,

since the characteristic operator of a martingale clearly annihilates affine functions.

The same contradiction is derived if a, > a. |
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3.3 Discussion

This chapter has set down and investigated a set of conditions sufficient to demon-
strate Bayesian optimality. It should be clear that these conditions are not the most
simple. Indeed, the simplest (nontrivial) sufficient conditions are given as follows.

Suppose that for any 7 € T one can find a threshold stopping time 7 € T satisfying,

e(rr) = e(ms); (3.3.1)

E/ csds>E/ ¢\ ds, (3.3.2)

for all 7 € [0,1]. Then clearly one need only conlsider threshold policies, for if a
Bayesian policy exists, then one can by assumption find a threshold policy which is
Bayesian optimal (see 2.3.7). This is the essence of the argument used in [LaVIGNA]
to exhibit necessary and sufficient conditions for the existence of an (a,b)-Bayesian
threshold policy when the observations arise from a diffusion observed through an-
other diffusion and for a particular choice of the cost {c; : t > 0}. The condition 3.3.1
is obtained therein with equality by choosing the thresholds so as to match the error
probabilities of the threshold policy to any arbitrary (admissible) rival policy.t The
matching is made possible by the fact that the error probabilities are related to the
thresholds by continuous, invertible mappings. Ir.x fact, these mappings are simple
and explicit (see equation 17.124 in [LIPTSER & SHIRYAYEY 78]. They are the
well known Wald approximations [WALD] which are exact in the diffusion case where
there is no overshoot.

The condition 3.3.2 is shown to be in effect as follows. First, one computes a
lower bound for the left hand side of 3.3.2 for all T € T using Jensen’s Inequa.l.ity
(see [WALD], [LIPTSER & SHIRYAYEV 78]). In fact, this lower bound holds ir-

t Be aware that the hypothesis test there is based on the likelikood ratio. However,
the likelihood ratio is related to the a posteriort probability through a bijection and

thus the tests are equivalent, only the thresholds differ. See Appendix I
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respective of the continuity of either the state space of the {m: : t > 0} process or
the time parameter set (compare with Theorem 2.3.1), for a proper choice of run-
ning cost. However, in the diffusion case where continuity holds for both, one can
show that the right hand side of 3.3.2 equals the lower bound (see equation 17.115
[LIPTSER & SHIRYAYEV]). Therefore, the two conditions hold for diffusions in
general, with ‘the usual cost caveat. Thus the sufficient conditions 3.3.1-3.3.2 can
be shown to ho\ld true in the diffusion case and therefore one need only search for
an optimal policy from among those oi' threshold type. The necessary and sufficient
conditions for the existence of a (a,b)-Bayesian threshold policy are then obtained
by minimizing the risk directly over the thresholds. Given that the threshold‘ set is
open, if a minimum exists it can be obtained by setting the derivatives of the thresh-
old risk with respect to the two thresholds equal to zero. This leads to a system of
transcendental equations for which the existence and uniqueness of a fixed point is
given as a proposition in the proof of Theorem 5 in [SHIRYAYEV p.185] because the
same system is obtained via the so-called smooth pasting conditions arising in the
excessive function theoretic approach.t

Now unfortunately, the sufficient conditions 3.3.1-3.3.2 are useless in all but the
diffusion case for two reasons. First, matching the error probabilities by choosing
the thresholds can be done explicitly in only this case, and in virtually all others
the best that one can hope for is a proof of the existence of such thresholds. The
matching process is simple for diffusions because of their sample path continuity and
it is the lack of this continuity which causes great analytical difficulty for jump-type
processes. Second, the lower bound mentioned above is attained in only the diffusion

case. Again, this is intrinsic to diffusions because of the continuity of their sample

1 Incidentally, the proposition given in [SHIRYAYEV] is correct but its proof is not
(see equations 4.77-4.78 there and the subsequent comments). Consult Theorem 4.1.1

in the next chapter for a proof of an equivalent proposition.
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paths. In essence, the Wald-Jensen bound, if you will, is simply not tight enough for
processes with noncontinuous sample paths.

Given this state of affairs, the attempt was made to find an alternative set of
sufficient conditions which might yield optimality for both diffusions and processes
with noncontinuous sample paths (but continuous time parameter). The alternative
set of conditions were given in section 3.1 and our attention now turns to using them
in applications.

This concludes the chapter. In the next, the results of the previous chapters will
be used to solve four problems arising in applications. The first two deal with the
Bayesian problem when the observations come from a diffusion, and the second two

when one is observing a point process.



Chapter IV
Applications in Sequential Testing

4.0 Introduction

In this chapter four problems in Bayesian sequential hypothesis testing will be formu-
lated and solved. Given the framework established in the second chapter, formulation
here means specifying the two hypothesized probability measures, and the observation
o-algebra. In section 4.1 two problems are considered where one observes a diffusion
and seeks to minimize a given Bayes risk. In the first, it is assumed that one of two
constant drifts is responsible for the observations. Actually, the detection version of
the hypothesis testing problem is solved because it is mathematically equivalent while
notationally simpler. A constant, positive cost-rate is chosen for this problem which
is proportional to the the square of the nonzero drift. It is shown that a threshold
policy based on the a posteriori probability is optimal, and the risk and thresholds
are given. The second problem considered is the case where a diffusion with a drift
which is assumed to be merely progressively measurable is the basis for the detec-
tion problem. It is shown that, if one chooses a constant, positive cost-rate which is
proportional to the square of the stochastic drift, then again, a threshold policy is
optimal. In fact, it is shown that the risk and thresholds are identical to those in the
homogeneous case.

In section 4.2, two additional formulations are given. The first considers the case

where under each hypothesis, it is assumed that the observations are due to a constant

50
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rate Poisson process. Here the hypothesis testing problem is presented because the
detection problem—a constant rate versus a rate of one—is no real notational bargain.
A threshold policy is shown to be Bayesian, and explicit formulas for the risk and
thresholds are computed. The la,st"problem deals with the situation where a point
process with one of two predictable rates is assumed responsible for the observations.
It is shown that if one chooses a constant positive'cost-rate which is proportional to

the difference of the stochastic rates, then there exists a Bayesian threshQId policy.

Again, the risk and the thresholds are the same as those in the homogeneous case.
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4.1 Diffusion Observations

This section will draw on the formulation and notation laid down in sections 2.1
and 2.2 on the Bayesian formulation to the sequential hypothesis testing problem.
Following the briefest review, the problem will be specialized to the case where the
filtration history arises from observations of a continous semimartingale driven by a
standard Wiener process. ;.

Let 7 € [0, 1] be arbitrary throughout the remainder of the section, unless other-
wise noted. This will save the continual trouble of having to restate the obvious, and
this will not be done, except for emphasis in some of the numbered equations.

Recall that on the measurable space, (2, 7) there is given & family of probability
measures {Py : 0 < 7 < 1}, satisfying 2.2.2, and a {#o, 0, }-valued random variable,
8, with the a priors probability distribution given in 2.2.1. |Based on the observation
filtration, O, one wants to choose a value for § which minimizes the risk, defined in
2.2.4. Values for # are chosen by a two-step procedure. First, the decision to terminate
the observation procedure is made according to a (Py; O:)-stopping time, say 7, and
then the value for @ is chosen according to a (Py, O;)-binary random variable, say
§ (see definition 2.1.1). A particular application begins by specifying the nature of
{O: : t > 0}, the o-algebra generated by the observations.

It is assumed that the random variable @ is unobservable, but that one can observe
an initially zero continuous random process {y; : ¢t > 0} whose statistics under each
of the hypotheses—8 = 8, § = §;—are governed by the probability measures P, and

P, respectively. To wit, for each w € (1, the observation process has the stochastic

differentials,
h?(w)dt + dw:(w), if O(w) = bo;
dyt(UJ) =
hl(w)dt + dwe(w), if O(w) =0y,
where, {w; : t > 0} is a (Pr, %;)-standard Wiener process which is Pr-independent

of #, and where {h : t > 0} is an F;-progressive process satisfying, E;| fot |hi|ds] < oo,
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1 = 0,1. Now the above hypothesis testing problem can be easily shown, without loss
of generality, to be equivalent to a detection problem, and so, letting 8y = 0, and
81 = 1, the problem can be recast in the detection format, in which case {y; : ¢t > 0}

has the (Py, #;)-stochastic differential
dyt = 0htdt + dwt t Z 0, (4.1.1)

with the same requirements on {h; : t > 0}, and {w; : t > 0} just mentioned.

From 4.1.1, one takes the observation filtration, O, to be the o-algebra generated
by the {y: : ¢ > 0} process. Having done this, recall from section 2.2 that the a
posteriori probability is m; = P,{# = 1]0;}, t > 0. This permits the total average
risk to be given as V

p(m,7) = E,[f; ¢(ms) ds + e(m,)], (4.1.2)

where c;(r) is a given cost-rate function, and e(r) is the terminal cost as in 2.3.3.
Note that 4.1.2 is free of 6, as achieved in section 2.3.

Having defined the observation filtration, the immediate goal is to compute a
stochastic differential for the ‘{1rt : t > 0} process. From 4.1.1 it is clear that Py < Py,
so take,

_dp

At(w) = EP—O(Ot) (W), (4.1.3)

to be the likelihood ratio for the problem, i.e., it is the Radon-Nikodym derivative of
the O;-restriction of the measure P; with respect to the O;-restriction of the measure
Py. If m = 1, then Pr{m, = 1} = 1 with P, probability.one, for all ¢ > 0. Suppose
m < 1; in Appendix I, it is shown in this case that (see A.1.11),

T = _mehe é(As), (4.1.4)
1+ 1524

and so, applying the It6 differentiation rule one obtains,

Pre(1—ms tr2(1~m,)
Ty — Mo = / —(T—)-dAa - / ——Tz——d[A, A],. (415)
0 8 0

8
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The likelihood ratio for this problem is well known and is given by,

¢ t
A= exp{/ hody, — l‘/ ﬁfds}, (4.1.6)
0 2Jo

where,

ki = E1[hs|Oy). (4.1.7)
From 4.1.3 and 4.1.6, one can obtain,
t A
Ae=1+ / hoA,dy,. : (4.1.8)
0
Now, if one observes that (see A.1.7),
E-,r [0ht|0t] = Wtilt, (41.9)

then a straightforward calculation shows that there exists a (Py, O;)-standard Wiener

martingale, say {w; : t > 0}, such that {y; : ¢ > 0} has stochastic differential,
dye = mihydt + dib,. (4.1.10)
Combining 4.1.5, 4.1.8, and 4.1.10 yields,

t t
Ty — Mo = / ms(1 — w,)ib,dy, - / 72(1 - m,)hids
° 0 (4.1.11)
= / Ts(1 — 7,)h,dw, vt >0,
0
and so,

dry = m,(1 — 7,)h,dw,. (4.1.12)

It is clear from 4.1.12 that since {w; : t > 0} is a continuous martingale that
Oxlo = 8l = {a,b}, if Iy = (a,b) is some interval such that a < mo < b, Pr-a.s., and
0 < a < b < 1. It may not be clear that {m; : ¢ > 0} can be guaranteed to satisfy
Theorem 1.1.1, i.e., can be guaranteed to escape any such interval. To see that this

is so, first note that m; = ®(L), where & : R — [0, 1] is the bijective function given
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implicitly by 4.1.4 and the relation, L; = log At, ie., ®(L) = ¢(log(L)); L is called

the log-likelihood ratio. Now, equations 4.1.6 and 4.1.10 show,
1 A Y
dL: = (my — E)hfaht +hw, >0, (4.1.13)

which yields the (Py, O:)-compensator for L as,

1

1 A
A = (m— D t>0. ' (4.1.14)

As prerequisites to Theorem 1.1.1, it is assumed that,
(A1) PlAL| =} =1 Vvre]o,1);
(A2): P {|lAf| = }=0 Vre|0,1], Vt < .
These assumptions are necessary to ensure that {m; : ¢ > 0} will escape I, in fi-

nite time Py-a.s., and thence guarantee that the threshold policy with continuation

interval Iy will eventually terminate. Since P; € P, 1 =0, 1, it follows that,
P.{|AL|=o}=1 <= PB{AL|=w}=1 i=0,1 (4.1.15)

In view of 4.1.15, assumptions equivalent to (A1) and (A2) can be recast in terms of

the measures P;, i = 0,1 as, -
w ~
(A1) : P,-{/ hlds =00} =1 i=0,1;
0
t
(A2) : P;{/O hlds =00} =0 ¢=0,1, Yt < .
The third condition of Theorem 1.1.1 can be shown directly as,
|Ex[AF]| = |(1 — ) Eo[Af] + B [AF]|
t t
1, 1,
= |(r — 1)E0[/ Shids] + wEl[/ hds]
0 0
= |(r — 1) Eo|Af| + 7 Ey| AL | (4.1.18)
= |Ex|Af| - 71| A7 | + 7B | A7

~ E, |4
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Hence, by Theorem 1.1.1, L is guaranteed to escape any open interval in finite time
P,-a.s., and since 7y = ®(L;) where ® is bijective, then the same holds true for the
a posteriors probability.

Next, let r : R — [0,1] be some twice cohtinuously differentiable function. An

application of the It6 rule gives,

t t \

r2(1 = )22 () ds + / mo(1 = 7o) Rt (me)dims,  (4.1.19)
0

r(me) — r(mo) = /

0
using 4.1.12.
Suppose hy = h, t > 0, where h is some deterministic, nonzero constant. Thus,
(A1)’ and (A2)' hold. In addition, suppose that the cost-rate function is given a.s.
¢(w) = ch?, with ¢ a positive deterministic constant; this choice of cost-rate entails
no loss of generality since ¢ > 0 is otherwise arbitrary. In addition, it follows that
condition (T) holds, thus Eq[f;* c,ds] = co. This is a classic Bayesian set-up: a con-

stant running cost risk with a homogeneous diffusion. From 4.1.19, the characteristic

operator of the a postertors probability process is found to be,
Ur(n) = hix?(1 - m)%"(x)  Vr € (0,1). (4.1.20)

The application of the results in Chapter III begins by setting up the problem specified
by conditions (C1) and (C2), which is:
Ur(r) = —ch? vr € (0,1);
r(r) = e(m) T € {a,b}.
Substituting 4.1.20 into the above and dividing by h? yields,
r2(1-m)?""(r)=-c Vre(0,1);
(4.1.21)
r(r) = e(m) T € {a,b},
which is a family of ODE’s indexed by the boundary points {a,b}, a < b. Motivated

by Theorem 3.2.1, it is required that a solution to 4.1.21 for a, b given at least satisfies,

r(m) is continuous Vr € [a, b]. (4.1.22)
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Clearly, the solution to 4.1.21-22 exists, is unique, and is easily obtained in closed

form as,

b—m T

r(m) = s——e(a) + 5= :‘[e(b) — d(b) + d(a)] + d(r) — d(a), (4.1.23)

—a b—

where,

d(r) = ¢(1 — 2m) log ] 1—r -

Now it is clear that () is concave for all m € (0,1) directly from 4.1.21. However,
it is also true that 4.1.21 shows that r € C*t(E), with E = [a,b], and so invoking
Theorem 3.2.1, it follows that r(7) is concave for all 7 € (@, b]. Obviously, this weaker
concavity argument is trivial and unnecessary, but it is given for pedagogical reasons—
to show at which step Theorem 3.2.1 is applied. It will turn out that the concavity of
the subrisk is not a ‘“free gift’ in the discontinuous martingale case considered in the
next section.

Since r(r) is concave for all m € (0,1), then condition (C3) is satisfied if one
imposes,

r'(a) = €'(a), r'(b) = €'(b). (4.1.24)

It is obvious that 4.1.24 guarantees (C3), nevertheless, an appeal to Theorem 3.2.2
can be made. The solution {a*,b*} to 4.1.24 is easily shown to exist (see below).
Its uniqueness is also easily shown, but follows a fortiort in view of Lemma 3.1.2
simply from its existence. Again, in the jump process case, this is a welcome device
to proving uniqueness because the existence proof will be difficult enough. |

In summary, the three sufficient conditions, (C1-C3), have been shown to be in

force. Thus, the following theorem has been demonstrated to be true.

Theorem 4.2.1 In the problem of sequential detection based on observations of the

homogeneous diffusion process,
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with running cost,

E,| fo " eods] = Eylch?r], (4.1.25)

there exists a Bayesian rule, vw* = (r*,6*), which is a threshold policy given by,

Tt = inf{t >0: m ¢ (a*,b*)}

o= 10 if mpe > b*; (4.1.26)
- 0, I.fﬂ",-t S a*.

The Bayes risk is given by,

with subrisk,

r(n) = pare(a’) + g [e(6) — d(87) + d(a)| + d(x) — d(a”),

and,

d(r) = c(1 — 2m) log - u . (4.1.27)

The constants a* and b* are uniquely determined from the system of transcendental

equations,
¢(a’) - d'(a*) = f(a,b");
(4.1.28)
£(5) - d'(b") = £(a",b°),
with,
f(a, b) — e(b) _ e(a) — (d(b) — d(a))’ (4'1'29)

b—a

where a*, b* satisfy condition (I), i.e.,

O0<a*" <7, <b*"<1; a"<b".

Proof:
Given largely in the preceding discussion. Note that the conditions (T), (A1), and

(A2) are satisfied trivially because k # 0 and because c¢(r) = ch?, with 0 < ¢ < oo.
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Also note that 7* < o0, Py — a.s., Vr € [0, 1], in view of Theorem 1.1.1. The system
4.1.28 to solve for the optimal thresholds a*, b*, is obtained from 4.1.23 and 4.1.24.
In order to show that a*, b* exist satisfying 4.1.28, begin by transforming the system

to the following form:

et —d'(b) =~ d'(a);
(4.1.30)
c! + bd'(b) — d(b) = ad'(a) — d(a).

The origin of the first equality should be clear; obtain the second by eliminating

¢® from the system 4.1.28. To simplify the remaining computations let A = T2,
B = i—é—b, and thus the requirement 0 < @ < b < 1 becomes 0 < A < B < oo. Upon
substituting these values into 4:1.30 and rearranging there holds,}

1 1
®+ e +c[= —B—2logB] =c[~ - A—2log Al;
[B J=elg ) (4.1.31)

¢! — ¢[B +log B] = —c[A + log A].
Next, eliminate ¢! in the first equation, divide both sides of both the result and the
second equation by ¢ > 0, and rearrange to get,

1 1
B A (4.1.32)
'+ A+logA=B+logB, -

P4 itogl=t fiog
B A
where ¢° = ¢%/c and &' = c!/c. If one considers 4.1.32 as an implicit definition of the
mappings A — Bo(A) and A — B;(A), respectively, it follows that Bo(A) and B, (A)
have the same terminal behavior as A | 0 and as A T co. Such behavior is undesirable
since our goal is the equivalent of finding a fixed point to Bo(A) = B;(A). With this

in mind, rearrange 4.1.32 as,

B
=-1
AB +log§-—50,
B _ B (4.1.33)
BAQ +log—/-1-=51.
A

t Compare 4.1.31 with equations 4.77 and 4.78 in [SHIRYAYEV].
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Define R = % and make the substitution,

—I—Z%l-f-logR:EO;

B-——-R}_Z-1 +logR=¢',

with the requirements 0 < B < 00, 1 < R < oo. Consider the first equation in

(4.1.34)

4.1.34 and the implicit mapping R — By(R). One can show via the Implicit Function

'
\

Theorem that Bo(R) € C(1, 00) where Bo(1) = 0 and,

B!)(R) = %‘lg—}?(l + _’-?93@) > 0.

On the other hand, it also follows that B;(R) € C'(1, 00) where B;(1) = oo and,

B!|(R) = ﬁ(w@) <o.

Consequently, there exists a unique R satisfying
0 < Bo(R) =B;(R) < 0; 1< R<oo. (4.1.35)

Chaining back through the argument, it has been shown that there is a unique so-
lution (a*,b*) satisfying 4.1.28 and also 0 < ¢* < b* < 1. From Lemma 3.1.2 and
Lemma 2.3.2, it follows in addition that condition (I) is satisfied. This completes the
proof. | |

To facilitate the numerical calculation of the thresholds, begin by subtracting

the first equation in 4.1.34 from the second to obtain,

R—I—R""l ~1 ~0

BR B=c—c,

and thence,

yielding,

H_O/ R i1-&/ R 2 ‘
= R. 4.1.36
B 2 (R-—1>+\/[ 2 (R—l)] + ( )



§4.1 Diffusion Observations 61

Replacing B by 4.1.36 in the second equation of 4.1.34 and defining S = /R > 1,

one can obtain the following compact expression,

1 o 18- »
(S B §) P [smh (55_—55)] +2log S = &l (4.1.37)
If one computes a solution to 4.1.37, then the optimal thresholds (a*,5*) are obtained

from,

~1 _ =0
A= éexp [sinh_1 <%§ci?f__—l)} ;

_ Loy (1 E -8\
B=S exp [smh (EE-—_—S—_—T H
. A

a = —

1+ A’

(4.1.38)

+

_ B
T 1+B°

In the special case where ¢® = ¢! > 0, it follows that B = S = 1/A and B satisfies,

*

B——11§+210gB=E°=El. (4.1.39)

Note in this case that b* = 1 —a*, and 0 < a* < % < b* < 1. As an example, if
¢® = ¢! where,
1
®=(3- 3t 21og(3)) - c,

then,

s_1 3
a—z, b—4

In general, 4.1.39 can be used to obtain an initial guess for an iterative method
involving 4.1.37, or can be used as an approximation when ¢° = ¢!.

Notice that the drift coefficient has been effectively ‘factored out’ of the problem
as a result of choosing the cost-rate as in 4.1.25. A particular choice of the cost-rate
constant for an instance of the above problem is purely a design decision, modulo the

positivity requirement. There is no choice which is uniformly good for all problems.

However, the choice made herein, c¢(r) = ch?, is intuitively satisfying since it not
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only enjoys positivity, but moreover exhibits the appealing property of penalizing the
detector more, or less, depending upon whether the magnitude of the drift is greater,
or smaller than one, and does so according to the square of the magnitude. One might
say that this choice of cost-rate is reasonable in that it reflects a designer’s modest
desire to expect better performance from thé detector (faster decisions on average) in
‘favorable’ problems (large drifts to detect), and to allow worse performance (slower
decisions on average) in ‘hard’ problems (drifts close to zero). Apparently, such a
designer believes “not all filtrations are created equal”, to put it colloquially.

As mentioned, a by-product of this choice of cost is that the drift is factored out
of the risk, and therefore the risk is independent of any particular drift. This is a
significant advantage because it implies immediately that the results of Theorem 4.1.1
can be extended to a more general case. To see this, first consider that the proper

generalization of the cost choice discussed above is to take the running cost as,

E, [/ ¢ ds] = E,..[/ ch?ds], (4.1.40)
0 ~Jo

in the case where the drift of {y; : ¢ > 0} is in general only known to be (Py, #)-
progressive. For this choice of cost, it is clear that ¢; = ch?, ¢ > 0, ¢t > 0, is a
(Px, O¢)-progressive process. Having made this choice of running cost, one can prove

the following.

Theorem 4.1.2 Assume (A1) and (A2) hold. In the problem of sequential detection

based on observations of the process (see 4.1.1),
t
Yy = 0/ hods + w; t >0, (4.1.41)
0
with running cost,
T T N .
E,,[/ cods] = E,,[/ chlds] ¢>0,t>0, (4.1.42)
0 0

the threshold policy, u* = (r*,6*), given in the homogeneous case, is Bayesian. More-

over, the risk and thresholds are exactly the same.
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Proof:
First note that (T) follows from (A1l).

The computation of the risk is given by,

p(m) = Tlélg_ E,,[/(; cs ds + e(m,)]

' T

= inf E,| / ch? ds + e(m,)] (4.1.43)
€T 0

= inf E,,[—/ h2Ur* (m,) ds + e(r,))],
1€T 0

with r* as Theorem 4.1.1 and where U is the operator as in 4.1.21. Hence,
() = #*(x) + inf Exle(r,) — " ()] = " (m), (4.1.44)

but this is the same risk as in the homogeneous case, and so the result is shown. &

A special case of the above result is given in [LaVIGNA], using an argument
based upon a theorem due to Shiryayev [LIPTSER & SHIRYAYEYV 77] for the gener-
alized problem of Wald sequential detection [WALD]. The theorem above was proven
independently and in fact can be used to obtain the generalized Wald result sim-
ply and directly, using an argument which is formally equivalent to the method of
LeCam used in the discrete-time case [LEHMANN)]. The proof given here has an-
other advantage in that it makes it clear how to generalize the Bayesian problem
to include other cost-rates and thence also to extend the Wald results. As a final
note, the reader should be aware that the formulas given here are different from those
appearing elsewhere, but lead to the same results.

This concludes the section. In the next, the Bayesian problem is considered for
the homogeneous Poisson case, which has interesting similarities with the homoge-
neous diffusion case. Lastly, a more general theorem is obtained from the homoge-
neous result by choosing the proper cost, in much the same way that the homogeneous

result was extended in this section.



Chapter IV : Applications in Sequential Testing 64

4.2 Point Process Observations

This section will consider the sequential hypothesis testing problem from the
Bayesian viewpoint when the observations arise from a continuous-time point process.
The notation and basic set-up are given in sections 2.1 and 2.2.

Recall that on a measurable space (2, ), there is given a family of probability
measures {P, : 0 < 7 < 1}, satisfying 2.2.2, and a binary valued random variable,
6, with the a priors probability distribution given in 2.2.1. Based on the observation
filtration, O;, one wants to choose a value for § which minimizes the risk, defined in
2.2.4. The manner in which values for § are chosen has two parts. First, the decision to
terminate the observation procedure is made according to a (Py, O;)-stopping time,
say 7, and second, a value for # is chosen according to a Py, O,)-binary random
va.ria.i)le, say 6 (see definition 2.1.1). A particular application begins by specifying
the nature of {O; :'t > 0}, the o-algebra generated by the observations.

It is assumed that the random variable 8 is unobservable, but that one can observe
a counting process {n; : t > 0} whose statistics under each of the hypotheses—6 = 0,
6 = 1—are governed by the probability measures P, and Py, respectively. Specifically,
for each w € 1, the observation process is an initially zero counting process with

semimartingale representation,

) - I3 A(w)ds + my(w), if B(w) = O;

fot A (w)ds + me(w), if O(w) =1,
where, {m; : t > 0} is a (Py, #;)-martingale which is P,-independent of 4, and where
{\i:t>0}isan F:-predictable process satisfying E; fot |A%|ds < o0, i =0,1. Thus,
it is assumed that the observation process is a ( Py, #;)-semimartingale with stochastic

differential,

dny = (9XA; + (1 = 0)A})dt +dm; ¢t >0, (4.2.1)

while the observation filtration is the o-algebra generated by this process.
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The first step is to compute a (Pr, O¢)-semimartingale representation for the a
posteriori probability, 7, = Pr{0 = 1|0}, t > 0, as a precursor to minimizing the
total average risk given in 2.3.7. To begin, note that the likelihood ratio for the

problem is well known and is given by,

t
At—exp/ log dn, /(ii——:\g)ds] t>0, (4.2.2)
0

where,

= E;[A}|0.-] t>o0. (4.2.3)

From 4.2.2 it follows that,

M- S0
dAt = At_ ,\2 (dnt - At dt). i (4.2.4)
Now, using 4.1.4, one obtains,
¢ E] 1 — Ty
Tt — 7o =/ E(—A——ldAﬁ-i— Z Ad(A,), (4.2.5)
o s 0<s<t
and from 4.2.4 '
dAS = —A,(A} — 30)ds. (4.2.6)
The computation for A@(A:) is given as,
AG(Ay) = T=AA;
T AL+ T A)
=y (1 — 1r,g)-éﬂ
Ao
. R (4.2.7)
(1-m) 2
=M1 — 7y ry
A2
— ﬂ't_.(]. - 1|'¢)
Ut ’
where the last line also serves to define {u; : t > 0}. In addition, note that,
1
l—mp=——
e 1+ 1524
_ 1
1+ 2o A+ 20 (4.2.8)
(1 - 1rt_)ut

Ut + Mg~
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Combining 4.2.5, 4.2.6, 4.2.7, and 4.2.8 yields,

t A ~ — 1_7r—)
Ty — Mg = — A - X)r, (1 = m,)ds + M——
i=ro=— [(R3-S)m(1-m) DI
(4.2.9)
t l\l Ao t7r,_(1~—1l',_)
=—/0 (/\a—'\a)ﬂa(l—ﬂa)ds'*'_/; —J::;r;_—dns,

where the second line follows since {m; : t > 0}, and therefore {n; : ¢t > 0}, has

unity jumps. Now, if one observes that (see A.1.7),
Eo[0AL + (1= 0)A9]0s] = Admrem + X0 (1 — 7, ), (4.2.10)

then a straightforward calculation shows that there exists a (P, 0;)-martingale, say

{m¢ : t > 0}, such that {n; : t > 0} has the (Px, O¢)-stochastic differential,
dny = (Adme + 30(1 — mp))dt + drmy, (4.2.11)

Substituting 4.2.11 into 4.2.9 gives,

t
7‘-,—(1 - 7['_,._) -
T — W = ——dmn,. 4.2.12
t ° ,/(; Us + Ty— ° ( ) ’

Having computed 4.2.12, the next step is to investigate under what conditions a
process as in 4.2.12 can be guaranteed to escape an interval and hence serve as the
basis of a threshold policy.

Consider an interval Iy = (a,b) such that 0 < a < b < 1, and a < mo < b, Pr-as.

From 4.2.2, 4.2.11, and the relation L; = log A;, there holds,

~ ~ Al A ~ Sl
dL; = [(\me_ + 32(1 - m_)) log % - (3 -39 +log Sham,,  (4213)
t t

yielding the (Pr, O;)-compensator for L as,

. . Mo
A = (Nmee +20(1 - m-)) log 35— (A = X2). (4.2.14)
t



§4.2 Point Process Observations 67

As in section 4.1, the assumptions (A1) and (A2) must hold in order to apply Theo-
rem 1.1.1 and thus ensure that L will escape Iy in finite time Pr-a.s. In view of 4.1.5,

the assumptions (A1) and (A2) can be recast in terms of the measures P;, 7 = 0,1,

equivalently as,

[ o]
A)": P / o3 8)ds = co} =1 i=0,1;
0
t
(A2)" : P,-{/ o317 Ri)ds = 00} =0 i =0,1, ¥t < co.
0
where,
1 40 1 Al 1 0
(AL A%) =2 logF — (A=A (4.2.15)
Notice, for A%, A! >0,
-
(A1, 2% = Allog Svha (A* =29
M (4.2.18)
> )\llogﬁ--'r—z\llog—/\—O:O,
and similarly, .
A
A0 AN = —2%log = — (A0 =AY
o( ) 835~ ( ) (4.2.17)

> (A" =X+ (A1 -2 =o0.

The third condition of Theorem 1.1.1 is an easy consequence of 4.2.16 and 4.2.17 using
the same steps as in 4.1.18. Thus by Theorem 1.1.1, L is guaranteed to escape Iy in
finite time Py-a.s., and since m; = ®(L.), where ® is bijective, then the same holds
true for the a posteriors probability. A difficulty however, is that the m-boundary
of I is not simply its endpoints as in the diffusion case, and worse, it is stochastic
unless u; is deterministic for all ¢ > 0. Therefore, although conditioﬁs have been given
under which {m; : t > 0} can be guaranteed to escape intervals, the m-boundary of
the process is difficult to work with in the general case.

Avoiding this diiﬁclulty for the moment, it is desired to compute the characteristic

operator for {m; : t > 0}. So, assuming r € C!*(E), with E = (0, 1), an application
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of Theorem 1.1.2 gives,
r(me) - r(mo) =
/t(:\ - )\0 [ —me(1 — ma)r'(ms) + (us + 1r,)[r(

+ / Lot L o N o),

Ug—e |+ My

us +1
Uy + T,

rrs) - r(w,)]] ds

(4.2.18)
using 4.2.11 and 4.2.12.

Now consider the case where A} = A, A9 = X% ¢ > 0, are deterministic con-
stants. Assume that these constants satisfy Al > A° > 0, without loss of generality.
Thus (A1)” and (A2)"” hold. Also suppose that the cost-rate function is given as
c(m) = ¢(A! - A%), a positive deterministic constant; thus Ey| f0°° ¢(rs)ds] = oo and
therefore condition (T) holds. The terminal cost is e(r), as usual.

In view of 4.2.9 with
AO
U = U= —————,\1 _/\0,
it is clear that 8; Iy = {a}, i.e., {m : ¢ > 0} will exit I continuously on the right.
However, since {m; : ¢ > 0} will exit Iy on the left only by jumping, then it follows

that 83 I = [b, ELp). To see this, consider that whenever 7, € [b — 51=8) 'b), it has

’ u.+b u+b ?
the potential of getting into 8} Iy because its jump size is "‘—‘u(_:—;%l at that time.

Letting X7 denote the new state arrived at by jumping from m;_, i.e.,

1l't_.(1 —-‘ll't_) u+ 1
Y = e = -
e e ¥ U+ M- U+ Ty— e

yields,
3xIo = {a,[b,Lb)},

as the m-boundary of Iy, for Iy as defined above.

From 4.2.18, the characteristic operator of {m; : ¢ > 0} is found to be,

u+1
u-+T

Ur(r) = (A} =29) [—7r(1—7r')r'(1r)+(u+1r) [r( ) -—r(vr)]] Vr e (0,1). (4.2.19)
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The application of the results in sections 3.1 and 3.2 begins by setting up the problem
specified by conditions (C1) and (C2), which is:
Ur(r) = —e(A' = 2%  vre(0,1);
{ r(w) = e(m) 7 € {a,[b,Lb)},
choosing a particular form for the cost rate constant without loss of generality (see
diffusion case in section 4.1). Substituting 4.2.19 into the above and dividing by
(A — X%) > 0 yields

uw+1

—n(1—m)r'(7) + (v + ) [r( T) — r(n)] =—c Vre(0,1)

utw (4.2.20)

r(r) =e(r) =& {a,[b,Tb)},

which is a family of functional advance differential equations, indexed by the boundary
points {a,b}. Motivated by Theorem 3.2.1, it is required that a solution to 4.2.20'
be continuous for all 7 € [a,Xb). Letting U represent the.operator in the equivalent
problem, it was shown in Theorem 1.1.2 that for every 0 < @ < b < 1, that there
exists a unique solution to,
UR(r) = —c Ve (0,b)
R(r) =e¢(r) Vre{elbZb)}
with R(w) continuous for all * € (0,5). Also, in the theorem to follow it is shown
that there exists a right-continuous function, d(), satisfying,
Ud(r)=-¢ Vme(0,1)
d(r)=0 Vr & [b,Lb)
d(r) <0 Vx> Xb,
for any b € (0,1). So, take D(r) = d(r) + e(r), = € [b,1), and construct,

1‘(1!') = R(ﬂ') 1{1r<b} -+ D(ﬂ') 1{"25}.

This gives a family of right—continuous functions, ® = {r(-;a,0) .: 0 < a < b < 1}

satisfying,
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which are strictly continuous for all # < b, and all of which furnish the conditions
(C1) and (C2). In addition, by the corollary to Theorem 1.2.1, every r € R also
enjoys, r € C**(E), with E = (0,b), and as a result, by the corollary to Theorem
3.2.2 it follows that every r € R is concave on E. Recall also from the corollary to
Theorem 1.2.1 that, #'(r) is continuous for all = € (0, b), with the possible exception

of # = ¥~ 1b. This implies,
r'(w~) > r'(n) m=3"1h, Vr e R, (4.2.21)

since every r € R is concave. Solving for the derivative in 4.2.20,

vy et (wtm)[r(EErm) — r(n)]
r'(r) = - : (4.2.22)
and evaluating it at B¥, with B = £71, yields,
1 gty - ¢+ (ut+ B)[r(6*) — r(B)]
r ('B ) - B(l _ B) ] (4.2.23)
with the immediate consequence,
(™) > r(b), VreR (4.2.24)

in view of (4.2.21). Now if any r € R satisfies 4.2.24 with strict inequality, then
obviously such a member violates condition (C3). As a result, one is only interested
in the subfamily,

Ri={reR:r(b";a,b) =e(b)}. (4.2.25)

Again, the corollary to Theorem 1.2.1 has something to say. If r € R, then r(r) is
twice continuously differentiable at 7 = a (unless b = wtla) and therefore, in order

to satisfy condition (C3), it is necessary that r(w) satisfy,

r'(a) =¢'(a) reR. (4.2.26)
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Thus, if there exists r € R; = {r € R; : r'(a;a,b) = €'(a)}, then r satisfies the
conditions (C1), (C2), and (C3), and in addition, is concave on [(a,b)]~. In this case,
r(r) is the subrisk being sought.

An interesting subtlety has arisen here however. Contrasted with the subrisk
problem in the diffusion case, it appears that the problem here is ‘overdetermined’.
Consider the diffusion case. There, the two free constants of the second order dif-
ferential equation were chosen to satisfy the boundary condition (C2). Then, the
boundary points ‘a’ and ‘b’ were chosen as the solution to a system of two equations
in two unknowns whose unique solution was guaranteed to match the derivatives at
the boundary, and thence yield condition (C3). Here, the single free constant of the
first order differential equation is chosen to satisfy the boundary condition at 7 = a,
and this leaves- only ‘@’ and ‘b’ with which to satisfy the boundary condition at 7 = b
and the condition on both derivatives to obtain condition (C3). The pathway out of

this apparent difficulty is provided by the following lemma.

Lemma 4.2.1 Let r € R. Then #'(b™) > €'(b).

Proof:

From 4.2.22,
Jr— c _utbd o u+l vw+b _
r(b )—b(l—b)_b(l—b)e(u+b )= =g "0
_ ue(b) u+b -
=3i-8 sa=p5 )
be(b) u+b

= “Hi=0) + i) le(d) — (b7)] (4.2.27)
- f(_l’)b + bztbb) (r(8) — r(57)]

= ) + g gy lr(E) — r(b)

Since r € R, it is clear from the last line and 4.2.24, that

AT > +¢'(b) > €' (b) | (4.2.28)

5(1—=0)

since ¢ > 0 is assumed. |
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Corollary:If r € R,, then,

c

r'(b_) — m + e'(b). (4.2.29)

Proof: Immediate from 4.2.27. |

Hence, if there exists r € Ry, then it indeed satisfies the conditions (C1-3). In
summary then, the problem to solve in the search for the subrisk is to prove the

existence of any pair a., b, satisfying,

(b7 5 as,bs) = e(by);
(4.2.30)
T'(a*; Ay, b*) = el(a"")’

or,
c

p—. — of .
r (b* ,a*,b*) =€ (b*) -+ b*(]. _ b*)’

r'(as; as,b.) = €'(a.),
where r € R. Recall that the uniqueness of the pair will follow from its existence in
view of Theorem 3.1.4. Be aware that 4.2.30 is a well-posed problem because it has
been shown that R is not empty, i.e., for any 0 < a < b < 1, there exists a solution
to 4.2.20. Proving that a,, b, exist satisfying 4.2.30 is somewhat involved, and so
is given in Appendix II. Based upon their existence, the followit;g theorem can be

shown.

Theorem 4.2.1 In the problem of sequential hypothesis testing, based on observa-

tions of the homogeneous Poisson process,
ng = (01\1+(1-—0)/\°)t+mt Al > AO, tZO,‘

with running cost,

E,,[/OT o(ms) ds] = Ex[c(A! = A%)1],
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there exists a Bayesian rule, u. = (74,8.), which is a threshold policy given by,

7o =inf{t >0 : m & (as,b.) }

5. = 1 ifn, 2 b,
* 0 ifr, <a,.

The Bayes risk is given by,

o(m) = {e(w) T & (ax,b4);

ro(m) 7w € (@, bs),
and the subrisk, r.(n) = r(7; a.,b.) is given by,

) __ [ R(m;a.,b.) ™ <by
r(mias,b) = {S(m b)  w>b,

with,
S(m;b) = e(m) + d(m;b);

d(m;b) = C(A* (1 — 7) + A%) (1 + Ny(7)),
where N; () is the integer such that Z(b) — () — 1 < Ny (r) < Z(b) — Z(), and,

T L 5= T C_CAI—AO
1—n" - log%;-, - A0

z(r) = log|

The definition of the subrisk, is completed by specifying,
R(r;a,b) = d(m;b) + D(m;b) + K(a,b) H(m; b);
D(m;b) = A1(1 — m) Do(m; ) + A% Dy (m; b);
H(m;b) = A (1 — ) Ho(m; b) + A Hy(m;b),

with H;, D;, + = 0,1 defined by,

Nb(‘n‘)
—v:(rw -1)" ~ ~ —-viin
Hi(m;b) =" () Z:O (——nT)—[(z(b) — Z(r) — n)vie” X"
Nb(‘ir)—_l n m
Di(m;b) = —CeiEB=3(M=1)  §™  gmvin } 7 (—%)'-—[(5;(5) — &(r) —n - V)™,
n=0 m=0 )
where,
i] Al
l/,;:-————A ngo'- 1:=0,1.

AI_AO’
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The constant K (a,b) is defined via,

K(a, b) — e(a’) - [d( ’b) _;_D(a’; b)]

H(a;b
The pair (@, b.) is the unique solution to

(b, ;a4,0.) = €'(b.) + c

b.(1-0.)’

r'(as; a4, b.) = €'(a.).
Note, that the ‘empty sum equals zero’, and ‘0° = 1’ conventions are used.
Proof:

Except for the explicit form given for the subrisk, the proof is contained in the
preceding discussion. Note that the conditions (A1), (A2), and (T) are trivially
satisfied because 0 < ¢(A! — A%) < oco. Also note that 7, < 0o Pr —a.s., V7 €[0,1], in
view of Theorem 1.1.1. As for the subrisk, in view of Theorem 1.2.1 it .is only necessary
to show that it satisfies 4.2.20 and is continuous for all 7 < b. The semicolons are
dropped here for notational convenience. First note that r(a) = R(a) = e(a), due to
the definition of K (a,b). Next note that,

d(r) = C(%ff) (A= (A1 = A0)71)(1-1) =0, Vrelb, Zj: Il)b)

and so, S(r) = e(w) on this set. Hence, the boundary conditions of 4.2.20 have been
satisfied. Also observe that,

(1= m) &) + () A

u-tm

7)—d(n)]=—-c Vre€(0,1)

where the derivative is taken from the right, as usual. Next, one can show, albeit
tedious, that,
UD=UH=0o. (4.2.31)

Thus far, have argued that the subrisk satisfies 4.2.20. It only remains to demon-
strate the continuity on # < b. Clearly, R(r) is continuous for all m except possibly

at those m < b where,

Ny(r) — Ny(r™) = —1. (4.2.32)
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It is not too difficult to see that H;(w), s = 0,1, is continuous at these points. On the
other hand, d(r) is clearly discontinuous at these points. A simple calculation shows
that,

d(r) —d(r7) = —C(A}(1 — ) + \nx),

at a discontinuity. On the other hand at the same discontinuity one can show that,
Di(r)— Di(r7)=C ¢=0,1.

From this it is easy to see that D(x) is also discontinuous, but of the same magnitude
and opposite sign as d(r). Therefore, the sum of the two is continuous on (0,5). The
existence and uniqueness of the solution to 4.2.30'is given in Appendix II. The proof
is complete. _ |

Given the form of the risk in the theorem, it is not hard to see why explicit
results are few and far between in the sequential analysis of jump-type processes,
although analogous results have been obtained for the Wald problem dealing with
Poisson processes [DVORETZKY &c].

Unlike the diffusion formulation in section 4.1, there is no easy extension 6f the
time-homogeneous result to the most general case. An obvious reason is that in
the diffusion case the drift factors out of the characteristic operator (or equivalently
the Dynkin function d(7)), whereas in the Poisson case the rates do not factor out
completely since » is ‘tangled up’ in U. As a result, in general when the rates are
stochastic, the state space of the process must be enlarged to include the rate. This
therefore leads to a partial functional differential equation for the risk in the two
variables, 7, and u (see 4.2.7). In addition, since the 7-boundary is also stochastic in
this case, one is forced to consider the (7, u)-boundary of the (m;, u:) process. This has
the immediate consequence that in general, one must extend the notion of threshold
policies from intervals to include open sets.

There is however one extension that can be obtained from the result above with
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little difficulty. This is the case when n; is given as in 4.1.1 and when the rate
processes {/\} : t > 0} obey,

IVEBOW t>0; i=0,1; >0 (4.2.33)

Obviously (see 4.2.1), {A\¢ : ¢ > 0} must be an F-predictable process such that
At > 0 Pr-a.s. Under these assumptions and the detectability conditions (A1) and

(A2) one obtains the following theorem.

Theorem 4.2.2 Assume (A1) and (A2) hold. In the problem of Bayesian sequential

hypothesis testing, based on the partial observation process (see 4.2.1, 4.2.33),
t
nt=/ (@Al +(1-0)X0)ds+m; t>0,
0

with running cost,

T T
E,,[/ c,ds]:E,,[/ c(\l =30 ds] ¢>0,
0 0

and terminal cost e(m,), the threshold policy, u, = (74,64), given in the homogeneous
case, is Bayesian. Moreover, the risk and the thresholds are exactly the same.
Proof:

First note that (T) follows from (A1). The computation of the risk is given by, -

p(m) = mf E, [/ c.ds + e(m,)]
= inf B / %) ds + e(m,)] (4.2.34)
= inf E,,[—/ (AL = X Tr.(n,) ds + ()],
T€T 0
with 7, as in Theorem 4.2.1 and U the operator as in 4.2.20. Hence,

p(r) =r. () + Tlél;_ Exle(m;) — ru(mr)] = ru(n), (4.2.35)

but this is the same risk as in the homogeneous case, and so the result is shown. N

This concludes the section and chapter.
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APPENDIX 1

Suppose one is given a measurable space ({2, ) upon which two distinguished
probability measures P;, ¢ = 0,1, are defined. Also suppose one is given some arbi-
trary (P;-completed) sub-o-algebra 0; C 7, + =0, 1.

Next define the family of probability measures, {P, : 0 < m < 1}, via,
P {A}=nP {A}+ (1 -m)P{A} VAe7F, 7€l0,1].
Finally, suppose there is an 7-measurable random variable § :  — {0, 1} such that,
P{d=1}=n , P{#=0}=1-m, (A.1.1)

i.e., @ = 1 with prior probability = and vice versa.

Given the above set-up, consider first the problem of expressing E,[y|0:] in
terms of P;-conditional expectations, ¢ = 0, 1, where  is some F-measurable random
variable and 7 € [0,1]. Now if m = 0,1, the problem is trivial, so suppose 7 € (0,1).
Noticing that P; « P, for : = 0,1, m € (0,1), it follows that one may define the

Radon-Nikodym derivatives,

Fw)= 95 w)  wen,i=01,7e(0,1)
”
and then there holds,
% dPit i .
E"[R |Ot] = ZIF = Rt = 0, 1, (A12)

where P}, ¢ = 0,1, P! are the Os-restrictions of the respective measures. Given this

set-up, one can prove the following theorem.

Theorem A.l.1 Let = € [0,1). Then,

E,[7|0s] = TR} E1[7|0s] + (1 — m) R} Eo[|0s]  Pr-a.s..
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Proof: Let A € 0, and compute,

/E,,h]Ot] dP =/ ~dP,
A A

dP,
-— A 7E qur (A.1.3)

_/ mdPy + (1 - 7)dP,
A’7 dP1r

using the Radon-Nikodym theorem. Continuing from the last line,

/E,[q[Ot]dP,,=7r/ fydP1+(1—1r)/'7dPo
A A A

(A.1.4)
—r / Ei[1|0¢] dPy + (1 — ) f Eo[|0:] dP.
A A
Now for ¢+ = 0,1 compute,
t dP!
E[10dP; = [ Eilr|0]dP! = | Ei[4|0d) - dP;. (A.1.5)
A A A x
Combining A.1.2-5 yields,
/ Ey[|0:] dP; =7r/ Ey[1| O RL dP; + (1 —n)/ Fo[| 04 RC 4P,
A A A
and hence,
/ Ey[1|0¢] dPy = / {(rR Ey}7|0d] + (1 = m) RS Eol]04]} dPy.
A A
“Since A € O; is arbitrary, it follows that,
E.[7|0:] = wR} E1[4]|0¢] + (1 — 7) R{ Eo[| 04}, (A.1.6)
except on O, sets of P,-measure zero. [ |

Now suppose that one takes v = #~', 8 the binary random variable defined in

the beginning, and ' any #-measurable random variable. Then note,

/E;[07'|Ot] dP,-=/ 0'7'dP;=/ ~'dP; ©=0,1,
A A ANn{8=1}
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and hence,
0 t=0
3 ' o m—
AE’[07|Ot]dP"{fA7'dPi i=1

Thus, for this choice of ¥ A.1.6 becomes,
E[0+'|0:] = nR} E1 [ Os]. (AL

Now A.1.7 will be used to connect the a posterior: probability process to the

likelihood ratio, where the a posterior: probability is defined as,
7y = Pr {0 = 1|0¢} 7 € [0,1], (A.1.8)

and the likelihood ratio is given by,*

B dpP}

Adw) = ) = Bol 3

EQ[ IOt] Vw & ﬂ Po — a.s., (Alg)

assuming of course that Py <« Po. Here, {O;:¢ > 0} takes on the role of a filtration
on (1, F), either right-continuous or discrete (see section 2.1). Letting 4/ = 1 in A.1.7
one immediately obtains, . '

dp}
dP;

me = Pr{0 = 1|0:} = Ex[0|0:] = 7 € (0,1). (A.1.10)

Using the Radon-Nikodym Theorem successively and observing that Pf <« P¢, one

obtains the following sequence of steps,

P}
mp= 4Py =7 ar;
*T T wdPE 4 (1 — 7n)dPE 1—7r+7rj—1€%
a
A.l.11
A, ( )
1+ T-As
- ¢(At),

where the last line serves to define the mapping ¢ : [0,00] — [0,1]. From A.1.11

one obtains,
l1-71-m,

Av=¢7Y(m) = (A.1.12)

m me

* The symbol £ W can be interpreted as the ratio of probabililty masses if necessary.
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Finally, for completeness note that for m# = 1 that,
e = E1[0]0¢] =7 -1 =1,

while for 7 = 0,

me = Eo[8]0:] =7 - R} =0.

From A.1.11 and A.1.12 it is clear that threshold policies based upon {m; :¢ > 0} and

{A¢:t > 0} are equivalent in terms of optimality, only their thresholds differ.
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APPENDIX II

In this appendix, it is shown that there exists a unique solution (a.,b.) to the

system of equations,

r(b7;a,b) = e(b); (A.2.1.a)

r'(a;a,b) = ¢'(a), 4 (A.2.1.5)

with r(m;a,b) and e(r) as given in Theorem 4.2.1 (see also 4.2.30). First suppose that
| a solution (a., b.) to A.2.1 exists, then from Theorem 1.2.1 and its éorollary it follows
that r.(7) = r(m;a.,bs) € C?(0,b.). From this and Theorem 3.2.1 it follows that
74 is concave on (0,5,). This implies, in view of Theorem 3.2.2, Lemma 4.2.1, and
A.2.1 that the conditions (C1), (C2), and (C3) hold. Finally, invoking Theorem 3.1.2
shows that the solution is unique. Thus, it is only necessary to show that at least one
solution to A.2.1 exists.
The approach to accomplish this will be to show that for every a € [0,1] there

exists a by (a) € [0,1], b1(a) > a such that A.2.1.a becomes,
r(b1 (a); a; b1(a)) = e(b1(a)). (A.2.2)

In addition, it will be shown that the mapping a + b;(a) is continuous and onto (0, 1).
Following that it will be demonstrated using A.2.1.b that there exists a continuous

mapping, e — ba(a), satisfying,
r'(a;¢,52(a)) = €'(a), . (A.2.3)

with b2(0) = 1, and such that the equation b2(a) = @ has a solution for 0 < a < 1.
Consequently, the two curves by (a), bz(a) must cross, i.e., there exists an ay satisfying
bi(ao) = bz2(ao). Choosing b. = by(ag), and a. = ao then yields a pair satisfying

A2.1.
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To begin, from Theorem 4.2.1 there follows,
r(m; a,b) = d(m;b) + D(m;8) + K(a,b)H(m;b) Vr <b. (A.2.4)
Letting w 1 b and noting N3(b~) = 0, after some algebra one obtains,

r(6730,0) = COM1-8) + %) + K(@,8) (L0 0 -)(° 42, (425
where by definition K(a,b) is

e(a) — [d(a; b) + D(a; b)]
H(a;d) |

K(a,b) = (A.2.6)

In the proof of Theorem 4.2.1, it was shown that H(m;b) and [d(m;b) + D(;b)| are
continuous for all 7 < b. Thus K(a,b) is at least continuous in its first argument and
one can verify albeit tedious that the mapping a — b(a) defined implicitly by A.2.2
and A.2.5 is continuous. Now, for any a € [0, 1], suppose b = b;(a) is chosen so that
[£-1b,b)  a. Then from A.2.6 there follows,

e(a) — C(A'(1—a) + X%) e \*
K(a,b) = (EDIEeY) (1 — a) : (A.2.7)

After some simplification, using A.2.5-7 one obtains,

r(b7;5,8) = C(A(1—8) + %) + [e(a) — C(A (1 — a) + \%a)] (i:D <((11(1——a;)1)>>u'

(A.2.8)

“

From A.2.8 it is clear then that two solutions to A.2.2 are given by b;(0) = 0, and

b1(1) = 1. Thus, it has been shown that a +— b;(a) is continuous and onto (0, 1).
The second half of the argument deals with A.2.1.b. First, suppose that for any

a € [0, 1], the inequality a < £715 is respected by b = by(a). Then from A.2.4, one

obtains the (right) derivative,

r'(m;a,b) = d'(m;b) + D'(n;0) + K (a,b)H'(r;5) n < 216, (A.2.9)
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Recall from Theorem 4.2.1 that, UD(m;b) = UH(n;b) = 0, and so,

Vo) = d(meb) - 2T [ D(Srb) — Dm: (S b) — B (o
(w5 a,0) = d(m8) + [D(zm3) - D(m;8) + K (a,8) (7 (Zm; ) — H (s )]
‘ (A.2.10)
Substituting = a into A.2.10 and the result into A.2.1.b yields,
D(a;b) — Dl(esb) + K (a,b) (H(Zas ) ~ H(a;b)) = =9 (o) - #'(o b).
] 7 3 ) b u + a 3
(A.2.11)

The last line can be simplified in two ways. First, a direct computation of the right

derivative d'(r;b) yields,
d'(m;0) = —C(A! =A%) (1 + Ny (n)). (A.2.12)

Also, from A.2.2 and A.2.5 there holds,

e(b) — C(AL(1—b)+2%) / b5 \*
K(8) = = o (1_b>. (A4.2.13)

Combining A.2.11-13 with a little algebra yields an equation whose left-hand side is,

— C(A(1 - b) + A%)
AO +A1

(1 —b)**! [D(Za;b) — D(a;b)] + (%) b* [E(Ea; b) — H(a;b)],
(A.2.14)

and whose right-hand side is,

ail_::) ¢'(a) (1 — p)*+1 + L= 9) OO =AY (1= 8T (1+ Ny(a).  (A2.15)

©u+a

Now notice that (a,b) = (0, 1) solves both sides (recall £0 = 0). The only troublesome

term is in A.2.15, a(1 — b)**t1 Ny (a), which goes to zero since,

0 < a(l —b)*"'Ny(a) < a1 — b)*F1(2(b) — £(a))

o (453
)

(1- a) (A.2.16)

(1 - ( —bla

B(1 — a) (1 — b)™ — &(1 — b)v+1 *281 o

IA
ar
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Thus far have shown 53(0) = 1, and from A.2.10 it is clear that ¢ — bs(a) is con-
tinuous, arguing as before. The last thing to show is that there exists an ag such
that 0 < b3(ag) = ao < 1, i.e., that the curve by(a) intercepts the line b = a in the
(a, b)-plane: For if this is shown, the two curves b; (a) and b;(a) must cross, yielding a
solution to the problem. To show b;(ag) = ao for some ag, consider A.2.4 for all b in
the vicinity of a. In fact, for any a € [0, 1], choose b = b3(a) to satisfy [Z~15,5) S a,

then from A.2.4
r(m; a,b) = d(m; b) + K (a, b) H(m; b)
(A.2.17)

1—-m

= o(ul =)+ 2°n) + K(ad) (221) (1= m00 ),

and so,

r'(m;a,b) = —C(A! — X°) — K (a,b) (1 = ”)u (“ * ") (A1), (A2.18)

m m

Substituting for K(a,b) from A.2.13 under the condition a € [£71b,b) yields,

¥ (m30,8) = —C(A — X°) — e(b) — C(A;(_l;b) + %) (b(l — w))“ (u+7r> _

(1-8)r m
' (A.2.19)
Thus, setting r’'(a;a,b) = ¢/(a) and using A.2.19 one gets,
—a(1-8)C(A' =A%) - (u+a) [e(b) -c(A'(1-b)+ )\Ob)] <l()§1_—b;li) = a(l-b)e'(a).
| (A.2.20)

Evaluating A.2.20 on the line b = a gives,
—a(l-a)C(A' =% — (u+a) [e(a,) -Cc(A'(1-a)+ )\Oa)] = a(1l - a)e'(a). (A.2.21)
After some algebraic simplification A.2.21 can be rewritten,
a(u+1) —c=0, (A.2.22)

ie, a= ﬂi&—?’\—ol. So if ¢ < u + 1, then a solution to A.2.1.b exists on the line a = b.
In this case, there exists a solution (a,,b.) solving A.2.1, as argued previously. Notice
that the condition ¢ < u + 1 holds automatically for all ¢ S 1. On the other hand,
this condition can also always be obtained by the simple change of time scale. This

completes the argument.
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